В.В. Трегулов, В.А. Степанов

ИССЛЕДОВАНИЕ MEXAHU3MOB ПРОВОДИМОСТИ ГЕТЕРОСТРУКТУР CDS/SI(P), ИЗГОТОВЛЕННЫХ МЕТОДОМ ГИДРОХИМИЧЕСКОГО ОСАЖДЕНИЯ СУЛЬФИДА КАДМИЯ

Приведены результаты исследования вольт-амперных характеристик и температурных зависимостей прямого и обратного тока гетероструктур CdS/Si(p), изготовленных с помощью технологии гидрохимического осаждения сульфида кадмия. Отмечается, что проводимость гетероструктур определяется процессами генерации-рекомбинации в области пространственного заряда.

вольт-амперная характеристика, гетероструктура, кремний, контактная разность потенциалов, область пространственного заряда, поверхностные состояния, рекомбинация, сульфид кадмия, фотоэлектрический преобразователь.

Гетероструктуры CdS/Si(p) могут успешно применяться в качестве фотоэлектрических преобразователей (ФЭП) солнечной энергии. Согласно данным, приведенным в работе [3], теоретическая оценка максимальной эффективности такого ФЭП составляет 26 процентов. Применение технологии гидрохимического осаждения для изготовления гетероструктур позволит существенно снизить стоимость ФЭП. Это делает актуальной задачу всестороннего исследования характеристик гетероструктур CdS/Si(p), и в первую очередь механизмов проводимости.

Исследованные в данной работе гетероструктуры были изготовлены методом гидрохимического осаждения тонких пленок CdS на поверхность монокристаллической кремниевой пластины p-типа проводимости с удельным сопротивлением 1 $Om\cdot cm$. Пленки CdS имели проводимость n-типа и толщину 2,5 $m\kappa m$.

Технология изготовления образцов подробно описана в работе [1]. Гетероструктуры, исследуемые в нашей работе, отличались от образцов, рассматриваемых в работе [1], тем, что они были изготовлены при более высоком содержании NH_4OH в растворе. Это позволило увеличить напряжение холостого хода (V_{XX}) ФЭП на 100 MB без легирования слоя CdS примесью индия.

Зонная диаграмма гетероструктуры CdS/Si(p) (рис. 1, [3]) типична для высокоэффективных ФЭП, так как отсутствует «пичок» ΔE_c на краю зоны проводимости, ухудшающий прохождение фотогенерированных носителей заряда [2].

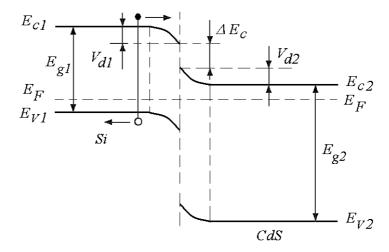


Рис. 1. Зонная диаграмма гетероструктуры CdS/Si(p) [3]

Гетероструктура освещается со стороны широкозонного слоя CdS, который играет роль оптического окна. Эффект окна заключается в том, что фотоны, энергии которых находятся в диапазоне значений ширины запрещенных зон E_{gl} и E_{g2} контактирующих полупроводников, проходя через широкозонный материал, генерируют электронно-дырочные пары в области пространственного заряда (ОПЗ) или в квазинейтральной области узкозонного полупроводника [3]. Эффективная фотогенерация носителей заряда в широкозонном слое CdS наблюдается преимущественно в коротковолновой области спектра. При воздействии солнечного света носители, генерированные в широкозонном полупроводнике, не вносят существенного вклада в общий фототок. Таким образом, в ФЭП на основе гетероструктуры CdS/Si(p) поглощение света и генерация носителей заряда происходят в ОПЗ или квазинейтральной области кремния.

Для выяснения механизма проводимости гетероструктуры CdS/Si(p) измерялись прямые и обратные ветви вольт-амперных характеристик в диапазоне температур 130–344 K. Установлено, что для прямых ветвей вольт-амперных характеристик вид зависимости ln(I) = f(V) изменялся в указанном диапазоне температур.

Прямая ветвь вольт-амперных характеристик во всем диапазоне температур может быть представлена следующей зависимостью:

$$I = I_0 \cdot \exp\left(-\frac{\Delta E}{kT}\right) \left[\exp\left(\frac{qV}{akT}\right) - 1\right],\tag{1}$$

где I_0 — ток насыщения, ΔE — энергия активации, k — постоянная Больцмана, T — абсолютная температура, a — показатель идеальности, q — заряд электрона, V — напряжение, приложенное к гетероструктуре [2].

В исследуемых гетероструктурах значение показателя идеальности превышало 2. Таким образом, проводимость исследованных гетероструктур определяется процессами генерации-рекомбинации носителей заряда в ОПЗ.

В формуле (1) энергия активации ΔE имеет смысл высоты потенциального барьера для электронов и может быть определена следующим образом [3]:

$$\Delta E = \Delta E_C + V_d = \Delta E_C + V_{d1} + V_{d2}, \tag{2}$$

где ΔE_C — разрыв запрещенной зоны на гетерогранице (рис. 1), V_d — полная контактная разность потенциалов полупроводников, образующих гетероструктуру, V_{d1} и V_{d2} — контактные разности потенциалов первого и второго полупроводников (рис. 1).

Гетеропереходы содержат на границе раздела поверхностные состояния с ловушками носителей заряда, которые являются центрами рекомбинации. Поверхностные состояния снижают плотность тока короткого замыкания и напряжение холостого хода, что приводит к уменьшению эффективности Φ ЭП [3]. Поверхностные состояния на гетерогранице снижают эффективное значение высоты потенциального барьера ΔE [2].

Для определения высоты барьера ΔE проводилось измерение температурной зависимости прямого I_{np} и обратного $I_{oбp}$ тока гетероструктуры при заданном значении постоянного напряжения V. Прямому смещению гетероструктуры CdS/Si(p) соответствует приложение положительного полюса источника напряжения к кремниевой подложке, отрицательного — к CdS. Обе зависимости имеют экспоненциальный характер. По наклону линейных участков зависимостей, представленных в координатах $ln(I_{np}) = f(1/kT)$ и $ln(I_{oбp}) = f(1/kT)$ (рис. 2, 3), были определены значения ΔE . Результаты измерения высоты барьера представлены в таблице 1.

Зависимость прямого тока гетероструктуры от температуры измерялась при напряжении 0,1 B. При более высоких значениях прямого напряжения величина ΔE становится меньше 0,1 3B. Это объясняется снижением контактной разности потенциалов V_d при прямом смещении.

Зависимость $ln(I_{np}) = f(1/kT)$ при $V_{np} = 0,1$ B (рис. 2) состоит из двух участков прямых с разным наклоном. В области низких температур (участок 1 таблицы 1) $\Delta E = 0,62$ $_{2}B$, при более высоких температурах высота барьера снижается до 0,34 $_{2}B$ (участок 2 таблицы 1).

Важно отметить, что величина ΔE при низких температурах $(0,62 \ 9B)$, полученная из зависимости $ln(I_{np}) = f(1/kT)$, совпадает с высотой барьера, определенной из высокочастотных вольт-фарадных характеристик. Высокочастотные вольт-фарадные характеристики измерялись с помощью цифрового измерителя иммитанса E7-12 на синусоидальном измерительном сигнале с амплитудой $25 \ mB$ и частотой $1 \ mCu$. Такое совпадение можно объяснить следующим образом. При измерении вольт-фарадных характеристик гетероструктуры на высоких частотах $(1 \ mCu)$ процесс перезарядки поверхностных состояний не успевает следовать за измерительным сигналом и не дает вклад в измеренную емкость. Поэтому, анализируя высокочастотные вольт-фарадные

характеристики, мы получаем значение высоты барьера без учета влияния поверхностных состояний.

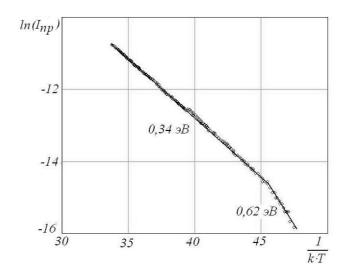


Рис. 2. Температурная зависимость прямого тока гетероструктуры CdS/Si(p), измеренная при V=0,1 B

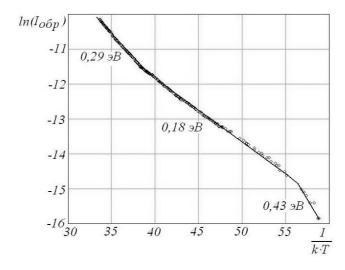


Рис. 3. Температурная зависимость обратного тока гетероструктуры CdS/Si(p), измеренная при V = 2.0~B

Таблица

Результаты измерения высоты потенциального барьера

$\mathcal{N}\!$	Диапазон	Энергия	Вид
участка	температур, К	активации, эВ	зависимости

1	240 – 252	0,62	$ln(I_{np}) = f(1/kT)$
2	252 – 344	0,34	
1	200 – 210	0,43	$ln(I_{o\delta p}) = f(1/kT)$
2	210 – 305	0,18	
3	305 – 344	0,29	

В случае измерения тока гетероструктуры при понижении температуры вклад поверхностных состояний, определяющих рекомбинационные процессы в определенном диапазоне энергий, может снижаться и они перестают существенно влиять на высоту потенциального барьера.

Важно также отметить, что значение $\Delta E = 0.34$ эB, определенное по температурной зависимости прямого тока гетероструктуры CdS/Si(p) в области более высоких температур 252–344 K (см. табл.), близко к величине, полученной из напряжения холостого хода (0.37 эB). Значение V_{XX} измерялось при температуре 298 K в стандартных условиях освещения AM 1,5.

Таким образом, наблюдаемый рост высоты потенциального барьера ΔE гетероструктуры CdS/Si(p) с понижением температуры (рис. 2), можно объяснить снижением влияния поверхностных состояний с ловушками носителей заряда на гетерогранице. При этом проводимость исследуемой гетероструктуры определяется процессами генерации-рекомбинации носителей заряда в ОПЗ.

Температурная зависимость обратного тока гетероструктуры имеет экспоненциальный характер. При достаточно больших обратных напряжениях смещения (V>1 B) величина $\exp\left(qV/akT\right)<<1$, поэтому формула (1) может быть представлена в виде

$$I_{o\delta p} = I_0 \cdot \exp\left(-\frac{\Delta E}{kT}\right),\tag{3}$$

что позволяет использовать температурную зависимость обратного тока гетероструктуры для определения высоты барьера ΔE .

В то же время, как следует из рисунка 3 и таблицы, значения ΔE , полученные из температурных зависимостей прямого и обратного тока гетероструктуры, существенно различаются. Это можно объяснить отсутствием насыщения на обратной ветви вольт-амперных характеристик исследуемых гетероструктур. До некоторого значения обратного напряжения вольт-амперных характеристик описывается линейной зависимостью вида

$$I_{o\delta p.} = I_0 + b \cdot V \,, \tag{4}$$

где b — константа, зависящая от температуры и определяющая наклон прямой. Далее обратная ветвь вольт-амперных характеристик описывается степенной зависимостью вида

$$I_{o\delta p.} \propto V^m$$
, (5)

где показатель степени m изменяется в исследуемом диапазоне температур от 2,7 до 1,4 (с ростом температуры m снижается). Такое поведение обратной ветви ВАХ гетероструктур отмечалось в работе [3], но причина указанных зависимостей в литературе не комментируется.

Таким образом, определение высоты барьера ΔE исследуемых гетероструктур по зависимости $ln(I_{oбp}) = f(1/kT)$ нельзя считать надежным, так как обратные ветви вольт-амперных характеристик не имеют насыщения.

Полученные результаты свидетельствуют о том, что проводимость в гетероструктурах CdS/Si(p), изготовленных методом гидрохимического осаждения CdS, осуществляется по генерационно-рекомбинационному механизму.

СПИСОК ЛИТЕРАТУРЫ

- 1. Трегулов, В.В. Исследование фотоэлектрического преобразователя солнечной энергии на основе гетероструктуры CdS/Si(p) [Текст] // Вестник ТГТУ. -2010. Т. 16. № 4. С. 892–896.
- 2. Фаренбух, А. Солнечные элементы: теория и эксперимент [Текст] : пер. с англ. / А. Фаренбух, Р. Бьюб. М. : Энергоатомиздат, 1987. 280 с.
- 3. Шарма, Б.Л. Полупроводниковые гетеропереходы [Текст] : пер. с англ. / Б.Л. Шарма, Р.К. Пурохит. М. : Сов. радио, 1979. 232 с.

V.V. Tregulov, V.A. Stepanov

THE INVESTIGATION OF THE MECHANISMS OF CONDUCTIVITY OF HETEROJUNCTIONS CDS/SI(P) OBTAINED BY HYDROCHEMICAL DEPOSITION OF CADMIUM SULFIDE

The paper offers the results of a study of volt-ampere characteristics and temperature dependence of direct and reverse current of heterojunctions CdS/Si(p) obtained by hydrochemical deposition of cadmium sulfide. The paper maintains that heterojunction conductivity is determined by the processes of generation – recombination in space charge region.

volt-ampere characteristics, heterojunction, silicon, contact potential difference, space charge difference, surface states, recombination, cadmium sulfide, photoelectric transformer.