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NEW UPPER BOUNDS FOR NONBINARY CODES

The paper presents new upper bounds for non-binary codes. The bounds can be obtained
by linear and semidefinite programming.

bounds, codes, programming.

Abstract — New upper bounds on codes are presented. The bounds are ob-
tained by linear and semidefinite programming.

INTRODUCTION

One of the central problems in coding theory is to find upper bounds on maxi-
mum size 4,(n, d) of a code of word length » and minimum Hamming distance at least
d over the alphabet O of g > 2 letters. Let us provide O with the structure of an
Abelian group, in an arbitrary way.

In 1973 Delsarte proposed a linear programming approach for bounding the size
of cliques in an association scheme. This bound is based on diagonalizing the Bose-
Mesner algebra of the scheme. To obtain bounds on A,(n, d), Delsarte introduced the
Hamming scheme H(n,q), which is generated by action of a group of permutations of
Q" that preserve the Hamming distance.

In 2005 Schrijver gave a new upper bound on A,(n,d) using semidefinite pro-

gramming, which is obtained by block-diagonalizing the (nT+3) — dimensional
Terwilliger algebra of H(n,2). The semidefinite programming bound for 4,(n,d), based
on the block-diagonalizing the (nTH) — dimensional Terwilliger algebra of H(n, g) was

presented later by Gijswijt, Schrijver and Tanaka.

In this work we introduce an association scheme which is generated by a sub-
group of permutations of Q" that preserve not only the Hamming distance, but also the
"type" of the difference of vectors. The dimension of the Bose-Mesner algebra of this

- 2_
scheme is (n;zll). We also describe the (n;f_ll) — dimensional Terwilliger algebra

of this new scheme. In particular, we have found that the orbits of Q" x Q" x Q" under
the action of the subgroup are characterized by certain g X ¢ matrices.

With these two algebras in hand, we derive a linear programming bound and a
semidefinite programming bound for 4,(n, d) which generalize the bounds above. For
the binary case, our scheme and the Hamming scheme H(n, 2) coincide.

ASSOCIATION SCHEMES AND THE LP BOUND



Let G —{gi = 0, g, ..., gq} denote an (additively written) arbitrary finite
abelian group with zero element 0, and G" = G x G x... x G denote an abelian group
with respect to componentwise sum. For an integer » we denote

N%: = {(ag1, - agie)):ag € {0,1, ...,n}, L gec @y = 1}
Define a function . G"—N°, as follows:

ViX) = (Cqr{%),cealX), oy Cq6i(¥), co(¥)=[{ixi = .

A nonempty subset C of G" is called a code of length n. For a set S € N¢ we
define

Agm, S) = max{|C|: CS G", y (y—x) ESVx,y€E C}.

For a€ NS let R, be a relation

R, ={x, VY EG" xG" :y (y-x)=0a}
and denote R = {R,} , € "

Let H denote a group consisting of the permutations of G" obtained by permut-
ing the n coordinates followed by adding a word from G", i.e.,

H={n(s)+v:m€ S, veEG"}.

It is obvious that H acts transitively on G". H has a natural action on G" x G"
given by h(x,y) = (hx, hy). The following lemma states that the orbitals {(hx, hy) :
h€H} form the relations of R.

Lemma 2.1. For any a € N, and x,y € G" such that (x,) € R, there holds R, =
={(hx,hy) : h € H}.

Proof: Let x, y € X be such that v (y —x) = a. Thus, for hi=m (*) + vE H,

hy — hx = (my + v) — (nx + v) = (y — X) and

V (hy—hx) =y (y —x) (1)

which implies that {(%x, hy) : h € H} CR,,

On the other hand, we have to show that for any (%, ¥) € R, there exists # € H
such that (X, y) = (hx, hy). One can see that exists ) € H such that sxx = 0 and Az —
u,, where Oy Og  Ogg

—_———

Uy, = 0....0.. 9i9i ---9i - g|G| g|G|a

namely /y(*) = my(*) — Tox for some 1y € S,- Similarly, there exists #; € H such that 4,X =
=0and h;¥ — u, , namely 4;(¢)=mn,(*) — m;X for some w; € S,. Thus,

h() =h" hos) =, wo(*) + & — ;7 mo(x)



satisfies (hx,hy) = (X, ¥) which proves the required inclusion.

2o . . . Gl-
Theorem 2.2. (G",R) is a commutative association scheme with (n|+c||—|11) rela-

tions.
Proof: 1t is well known (see for example [1]) that the orbitals from a group ac-
tion form relations of an association scheme. For (x, y) € R, denote

Ziy: = {z€ G" : (x,2) ER, (z.y) € Ry},
Zy = {zEG" : (x,2) E Ry, (z,y) € R,

Since z € Z,,) <>(-z) € Z,,., we conclude that

pya,ﬁ =Z(x,y)| = | Z(—y,-x)| = pyﬁ,a-

Note that the number of relations is equal to the number of (|G| — 1) — tuples of
nonnegative integers (0, ..., Ogg) such that o, + ... + oy <n.
Let D, denote the adjacency matrix of the relation R,, i.e.,

Lif (x,y) €ER,,
0,otherwise.

Do)y = {

The matrices {D,} , € N form a basis of a commutative (n|+6||c_|11) — dimen-

sional Bose-Mesner algebra A, of the scheme (G", R).

In general, (G", R) is a non-symmetric association scheme.

For o € N, the inverse R, = {(3, x) - (x, ) € R,} of the relation R, is given by
R, = Rg where

@ := (B2, .., Bgig)) » Qgi = g, Q)

(n,0,...,0) _

It's easy to see that the valency of the relation R, (and of Rg) iS4 =Pyg

= (comprminr)
Qp,xgz,-Ag|G| .

Consider the association scheme (G",R), where R={R,}, Ry = Rq U Rz!. This
is symmetric association scheme. Note that

Dy = Dy + Dy

are symmetric matrices. We denote by Ag,, the Bose-Mesner algebra of {G”, R) and by
G™ = {X,}uegn the group of characters. The next theorem gives more details about
the symmetric scheme.

Theorem 2.3. The unitary matrix U which diagonalizes the A, is given by



1
(U)x,y = |G|_n|2Xx(y) .
The primitive idempotent ] ,, a € NS, is the matrix with  (x, y) entry

7 1
(]zx)x,y = o Y zegn Xy—x (2). 3)
p(2)e{a,a}

The eigenvalues are given by

Pg(@) =Qp(a) = ¥ zeen Xu(2) (4)
o(2)e{a,al

where u € G" is any word with y(u) € {a.aQ}.

For a. = (ay, ..., 0gg)€ N there holds

Ky Z g | = Z O (@)
JEG* ﬁ=(ﬁow“ﬁmGD€Ng

ﬁg2+---+ﬁg|G|=k
Where K, (x) is the Krawtchouk polynomial of degree £.

A. Association Scheme for G = Z;.
Let us look at an example for G = Z; = {0, 1, 2}. For convenience we will omit a,.

Nr?: {a— (0 o) s a; + o, <nk

Thus, the number of relations in a non-symmetric scheme (Z%,R) is [R| =
= (”;2), and the number of relations in the symmetric scheme (Z%,R) is

2)%2 . .
A %, if niseven,
R =

—(n+1)4(n+3) ,if nisodd.

he oty Qs (o1.0) =By (2257 .) (5 (5)

s+t<a,
p+s<fq

] ] q+t<f, ]
X eZm/B(p+q+s+t)(ean/B(q+s) + (1 _ Sﬁl'ﬁz)eZm/B(p+t))'

We list here few polynomials:

Q(o,o)((ap az)) =1,



Q(1,0)((a1:a2)) =2n—3(a; + ay),

Q(1,1)((a1:a2)) = Z(n_a{az) -

—(ay + a)(n— (ay + @) — aya; +2 (6;1) +2 (azz)’

Qo ((ayaz)) = 2("%7"%) -

a a

—(ay + az)(n —(a; + az)) + 20, — ( 21) — ( 22),

2 if a; = ay(mod 3),
—1 else.

Q(n,o)((apaz)) = {

B. The Linear Programming Bound.

For a code CEG" let (a,),€ NS denote the inner distribution of C, i.e.,

IR, NnC xC|

a, =——m——

4 IC]
Clearly, we have

Ano,...0= 1, ZyeNg a, = |C].

The Delsarte's linear programming bound is given in the following theorem.
Theorem 2.4. (LP bound) For any positive integer n and set SS N¢ such that

.y 0) €S

Ac(n,S) < |max Z ayJ

yeNy
subject to the constraints

Am,0,..,0) = 1,
a,= 0 for y&S,

Z Q.(Y)a, = 0,a € Ny.

YENg

Where Q,(y) is given in (4).



THE TERWILLIGER ALGEBRA OF (G", R)

We will now consider the action of H on, ordered triples of words, leading to
noncommutative algebra J;n containing the Bose-Mesner algebra. Let M,{G) be the
following set of matrices:

M,(G) := AeCIGIXIGI, (A)g,g € (0,1, ..., n} and Xg g (A)g, g = 1.

For any matrix 4 € M,(G) we define three vectors #(4), c(4), p(A) € N§ by

@ ={ D Wogs ) Wlaly )

geG geG
c(4) = E(A)O.g' Z(A)g.glcl )
geG geG
p(4) = (ZgEG(A)g,g:ZgEG(A)g(g+g2)' ---'ZgEG(A)g.(ngGI))' ®)

To each ordered triple (X, y, z) € G" xG" x G" we associate the matrix
P(xy.2): =A%, € Ma(G)
where
(A3 D gig; = [l: (0 = 0k = gi, (z = 0k = g;}|.
Note that y(y — x), y(z — x) and y(z — y) are uniquely determined by the A7 ,:
vy —x) =1(4y,2), w(z—x) = c (43,), w(z—y)=p (43,2). (6)
If we define
Xa:={X,y,2} € G"x G"P(x, y,z) =A)
for 4 €EM,(G), we have the following.
Lemma 3.1. The sets X, A € My(G), are the orbits of G" x G" x G" under the
action of H. )
Proof: Letx,y,z € G"and let ¥ (X, y, z) = A. For h=m(*) + v € H we have from (1)
(P(hx, hy, hz))yg= | {k: (hy - ), = g, (hz — )= g} = [{k: (x(y — )= g
(n(z = k= g} =k (v = 0= g (2 0= g} = (Agig= DXY2))gig

which implies



Y(x, v, 2) = P(hx, hy, hz)

for any heH.

Let A €M, (G). To show that H acts transitively on X, it suffices to show that
for every (x, y, z) €EX there is h€H such that (hx, hy, hz) only depends on A. For con-
venience, we denote w(y — x) = aand v (z — x) = B. Let moES, be such that

O Olgi Og Gy

no(y — X)=ug=0 .....0 ... 9i9i - 9i - Gi6| - 96|

Now, let 71 €S,, be such that

U, and mmy(z — X) = ug,

where
%o ) ag; %96
o 0....0 9i9i---9i g|G|g|G|
B 0...0(A)gz;0...g/6’/...y/
B Gl(Agrglal
Thus,

h = mmy(*) — mmo(X).

Denote the stabilizer of 0 € G" in H by H,. For A €M, (G), let M, be the |G[" x
|G|" matrix defined by:

— 1! lf’,b’\(o;y;z) :Al
Map)y,: —{ g
(Ma)y. 0, otherwise.

Note that
MI =M AT

Let tgnbe the set of matrices

Z XAMA,

AEMn(G)

where x5 € C. From the Lemma 3.1 it follows that t;n is the set of matrices that are
stable under permutations o€ H, of the rows and columns, i.e., fo any 6€H, and Ma,



(MA)y,z = (MA)Gy, 7

Hence t4n is a complex matrix algebra called the centralizer algebra of Hy.
Since

MAMB =0 lfC(A):/: I”{B) .

it follows that T4n is a noncommutative algebra. The M4 constitute a basis for T4n,
and hence

. 2_
dimzgn = [M,(G)| = ("rc'l";'_ll).

Note that the algebra t;n contains the Bose-Mesner algebra Agn; for Y€ NS we
have (recall (5))

Let 7 denote the Terwilliger algebra of the association scheme (G”, R) (with re-
spect to 0). It is the complex matrix algebra generated by the adjacency matrices of the
scheme {D,},€ Ny and the diagonal matrices {E;},€ Ny defined by

1if (0,x) ER,
0 othewise

e =]

Theorem 3.2. The algebras 7,n and 1 coincide.
Proof: We have already seen in (7) that 75~ contains the adjacency matrices D,.
Note that

Ey = Mpy,

where A= diag(yo, Yo, ..., Yga) € M,{G). Hence 1 is a subalgebra of t5n. Now we
show the reverse inclusion. For Y€ N with yg >k and g; € G, g; # g; define

y(kg:g) € Ny by

You if L# i),

(y(k’gixgj))g] S= ygL - k lfl = i’



Also define the zero-one matrices:
Ni(k.gs8) = EyDaio, ... 0k0....00 Ey(e,g,.g)
where at the index of the matrix D, k appears in the (g; — g;) coordinate. Observe that

(Ny(k,gi,gj))y,z = IH(O: y, Z) EXA:
Where
(Youif l=mandl #1,

—x Ifl=m=],
(A= { Yoo f1=m=
| k if ,m)=C(,)),
0 otherwise.
I. Semidefinite Programming Bound

For 1 € H denote the characteristic vector of ~(C) by X" (taken as a column
vector). For a word x € G", let hy € H be any automorphism with hy(x) = 0, and define

R, = — 2 X0((©)) (x o (ha(EDYT
|Hol &

Next define the matrices R and R' by

1
R:= E ZXEC Rx:
r. 1

S T 2xegmc Ry

As the R,, and hence also R and R’ are convex combinations of positive
semidefinite matrices, they are positive semidefinite. By construction, the matrices R,,
and hence the matrices R and R’ are invariant under permutations ¢ €H, of rows and
columns and hence they are elements of the algebra To*. Define the numbers

Aa =] (CxC xC)NXy|
and let

ua :=|({0}xG"xG")NX,|

be the number of nonzero entries of Ma. It is easy to see that

_ n r(A)g, )
Ha <r(A)0,r(A)g2, ""r(A)gIGI) 8 ;TJG <(A)gi.0.(‘4)gz.gz' v (A gigie



Theorem 4.1.

R - Z xAMA!
AEM, (G)
, IC|
R |C|n —C] (xAp(A) xA)MA'
AEMy, (G)

where

X4 = (lclyA)_l/lA'
Proof: Denote by (4,B) := tr(A*B), the standard inner product on the space of
complex |G"| x |G"| matrices. Observe that the matrices M, are pairwise orthogonal
and that (M,M,) = pu, for A G M, (G). Hence

1
T4

(R M) = |C|2<Rx.MA> E I XCx O Xl =

x€C
implies that
> Ry =1
(Ovva)EXA

which is the total number of I's (with repetitions) in positions where R and M, are
both nonzero. From the symmetry, each entry in My is counted the same number of
times which is (ua) "As. Thus the first claim follows:

R= ZAEMn(G) (R My) = Y aem, () XaMa-

Now, the matrix

—|CIR + (|G|" = |CIR' = Z R, =

XEGM

|H()| 2 2 20 (12(0)) (o (na(@))T —

XEG™ 0€H,

x7 O (x7(ENT = 2 X0 (h (YT
|H0| Z Z |H |

XEG™ 0€H,



is invariant under permutation of the rows and columns by permutations h € H and
hence is an element of the Bose-Mesner algebra say

T = Zyezvg b,D,.
Note that for any z € G" with y(z) =y, we have
b, = (T)o = CI(R)o,, + (IG[" — [CNR ..
From the definition of R’

1
R = —m—— R
n _ X
(16 =1CD, £z,

follows that for x € G" \ C, holds 0 # hy(C) and 0 # o(h,(C)) for any o € Hy. There-
fore, (R")y, = 0 and we obtain

b, = (T)o. = [C|(R)o. = [C]| ZAEMn(G) xXa(Mp)o,, = |C|x(y),

where (y) denotes a matrix whose first row is a vector y and the rest of the rows are
zero vectors. Hence we have

(GI"-ICPDR'=T ~[C|R = [C| ZAEMn(R)(x(p(A)) — X4)My.
Finally, note that

p@) _
Up(a)

3 1
X(p) = (lcll‘(p(A))) ) = 1Clu,cn ICXCN Ry =
14

= (ICluspay = XDpay-

Since for y € NS,

Aa, = (CxCxC)nXAy|=2 Z 1.

ceCc c'ec
Y(c'-c)=y

It follows that

DD NIEE D IND IR ) e

yeN,‘:’ yeN,‘:’ cec c'ec cec yeN,‘:’ c'ec ceCc’ec
Y(c'-0)=y Y(c'-0)=y



and hence we have
2 _ _
|C| - Z)/EN,?AA)/ - Z)/ENg |C|uAyxAy-

Therefore

n
|C| - Z 'uAyxAY - Z <y0,yg2,...,yg|6|)xAy - Z nyAy.

YEN YENg YENS
Now we are ready to formulate the bound.

Theorem 4.2. (SDP bound) For any positive integer n and set S € N such that
(n,0,...,0) €S

Az (n,S) < |max Z UyXa,

YENS

subject to the constraints

xA(n,O,...,O) =1,

xp=0 if {r(4), c(4), pA}ELS,
Xaq = XyT,

R >0,R" > 0.
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b. MaynuTte
HOBBIE BEPXHUE I'PAHUIIbI HEBUHAPHOT'O KOJA

Cratbs MOCBAIICHA U3YUCHHUIO BEPXHUX TI'PAHUIL HEGI/IHapHI)IX KO OB. FpaHI/ILlBI MOXHO
MOJYUYUTh IYTEM JIMHEHHOr0 WIIN MOJIYyOIIpE€ACJICHHOI' O ITpOrpaMMHUPOBAHUA.

2panuywl, KOObl, NPOSPAMMUPOBAHUE.



