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NEW UPPER BOUNDS FOR NONBINARY CODES 
 

The paper presents new upper bounds for non-binary codes. The bounds can be obtained 
by linear and semidefinite programming. 
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Abstract – New upper bounds on codes are presented. The bounds are ob-

tained by linear and semidefinite programming. 
 

INTRODUCTION 
 

One of the central problems in coding theory is to find upper bounds on maxi-
mum size Aq(n, d) of a code of word length n and minimum Hamming distance at least 
d over the alphabet Q of q ≥ 2 letters. Let us provide Q with the structure of an 
Abelian group, in an arbitrary way. 

In 1973 Delsarte proposed a linear programming approach for bounding the size 
of cliques in an association scheme. This bound is based on diagonalizing the Bose-
Mesner algebra of the scheme. To obtain bounds on Aq(n, d), Delsarte introduced the 
Hamming scheme H(n,q), which is generated by action of a group of permutations of 
Qn that preserve the Hamming distance. 

In 2005 Schrijver gave a new upper bound on A2(n,d) using semidefinite pro-
gramming, which is obtained by block-diagonalizing the (௡ାଷ

ଷ
) – dimensional 

Terwilliger algebra of H(n,2). The semidefinite programming bound for Aq(n,d), based 
on the block-diagonalizing the (௡ାସ

ସ
) – dimensional Terwilliger algebra of H(n, q) was 

presented later by Gijswijt, Schrijver and Tanaka. 
In this work we introduce an association scheme which is generated by a sub-

group of permutations of Qn that preserve not only the Hamming distance, but also the 
"type" of the difference of vectors. The dimension of the Bose-Mesner algebra of this 
scheme is (௡ା௤ିଵ

௤ିଵ
). We also describe the (௡ା௤మିଵ

௤మିଵ
) – dimensional Terwilliger algebra 

of this new scheme. In particular, we have found that the orbits of Qn x Qn x Qn under 
the action of the subgroup are characterized by certain q x q matrices. 

With these two algebras in hand, we derive a linear programming bound and a 
semidefinite programming bound for Aq(n, d) which generalize the bounds above. For 
the binary case, our scheme and the Hamming scheme H(n, 2) coincide. 

 
ASSOCIATION SCHEMES AND THE LP BOUND 

 



Let G –{g1 = 0, g2, …, g|G|} denote an (additively written) arbitrary finite 
abelian group with zero element 0, and Gn = G x G x… x G denote an abelian group 
with respect to componentwise sum. For an integer n we denote 

 
NG

n: = ൛൫ߙ௚ଵ, … , :௚|ீ|൯ߙ ௚ߙ ∈ {0,1, … , �݊}��, ∑ ௚ߙ = �݊}௚∈ீ . 
 

Define a function ψ: Gn→NG
n as follows: 

 
ψ{х) := (cg1{x),cg2{x),…, cg|G|(x)), cg(x)=|{i:xi = g}|. 

 
A nonempty subset С of Gn is called a code of length n. For a set S ⊆ ௡ܰ

ீ we 
define 

AG(n, S) := max{|C| : С ⊆ Gn, ψ (y – x) ∈S ⋁ݔ, у ∈ С} . 
For α∈ ௡ܰ

ீ let Rα be a relation 
Rα := {(x, y) ∈ Gn x Gn : ψ (y - x) = α} 

and denote R = {Rα} α ∈ N
G

n. 
Let H denote a group consisting of the permutations of Gn obtained by permut-

ing the n coordinates followed by adding a word from Gn, i.e., 
 

H = {π (•) + υ: π ∈ Sn, υ ∈ Gn}. 
 
It is obvious that H acts transitively on Gn. H has a natural action on Gn x Gn 

given by h(x,y) := (hx, hy). The following lemma states that the orbitals {(hx, hy) : 
h∈H} form the relations of R. 

Lemma 2.1. For any a ∈ NG
n and x,y ∈ Gn such that (x,y) ∈ Rα there holds Rα = 

= {(hx,hy) : h ∈ H}. 
Proof: Let x, у ∈ X be such that ψ (у – x) = α. Thus, for h = ߨ (•) + v ∈ H, 
hy – hx = (πy + υ) – (πx + υ) = π(y – x) and 
 

        ψ (hy – hx) = ψ (у – x)               (1) 
 

which implies that {(hx, hy) : h ∈ H} ⊆Rα. 
On the other hand, we have to show that for any (ݔ෤,  ෤) ∈ Rα there exists h ∈ Hݕ

such that (ݔ෤,  – ෤) = (hx, hy). One can see that exists h0 ∈ H such that h0x = 0 and h0yݕ
uα, where         α0      αgi      αg׀G׀ 

 

uα = 0. . . .0ᇩᇪᇫ … ௜݃ ௜݃ … ௜݃ᇩᇭᇭᇪᇭᇭᇫ … |݃ீ| … ݃|ீ|ᇩᇭᇭᇪᇭᇭᇫ, 
 

namely h0(•) = π0(•) – π0x for some π0 ∈ Sn- Similarly, there exists h1 ∈ H such that h1ݔ෤ = 
= 0 and h1ݕ෤ – uα , namely h1(•)=π1(•) – π1ݔ෤ for some π1 ∈ Sn. Thus, 
 

h(•) = h1
-1 h0(•) = π1

-1 π0(•) + ݔ෤ – π1
-1 π0(x) 

 



satisfies (hx,hy) = (ݔ෤,  .෤) which proves the required inclusionݕ
Theorem 2.2. (Gn,R) is a commutative association scheme with (௡ା|ீ|ିଵ

|ீ|ିଵ
) rela-

tions. 
Proof: It is well known (see for example [1]) that the orbitals from a group ac-

tion form relations of an association scheme. For (x, у) ∈ Rγ denote  
 

Z(x,y): = {z∈ Gn : (x,z) ∈ Rα, (z,y) ∈ Rβ}, 
መܼ (x,y) = {z∈Gn : (x,z) ∈ Rβ, (z,y) ∈ Rα}. 

 
Since z ∈ Z(x,y) ↔(-z) ∈ መܼ (-y,-x) we conclude that  
 

pγ
α,β = |Z(x,y)| = | መܼ (-y,-x)|= pγ

β, α . 
 
Note that the number of relations is equal to the number of (|G| – 1) – tuples of 

nonnegative integers (αg2, …, αg|G) such that αg2  + … +  αg|G| ≤ n. 
Let Dα denote the adjacency matrix of the relation Rα, i.e.,  
 

(Dα)x,y = ൜1, ,ݔ) ݂݅ (ݕ ∈ ܴఈ,
0, . ݁ݏ݅ݓݎℎ݁ݐ݋

� 

 
The matrices {Dα} α ∈ ௡ܰ

ீ
 form a basis of a commutative ቀ௡ା|ீ|ିଵ

|ீ|ିଵ ቁ – dimen-
sional Bose-Mesner algebra AGn of the scheme (Gn, R). 

In general, (Gn, R) is a non-symmetric association scheme. 
For α ∈ NG

n, the inverse R α
-1 = {(y, x) : (x, y) ∈ Rα} of the relation Rα is given by 

R α
-1 = R஑ෝ where 

 
αෝ ∶= ൫αෝ௚ଶ, … , αෝ௚|ீ|൯ , αෝ௚௜ =  αି௚೔.               (2) 

 
It's easy to see that the valency of the relation Rα (and of  ܴ஑ෝ) is υα = ݌஑஑ෝ

(௡,଴,…,଴) = 
=  ቀ ௡

ఈబ,ఈ೒మ,…,ఈ೒|ಸ|
ቁ. 

 
Consider the association scheme (Gn,R෩), where R෩={R෩஑}, R෩஑ = R஑ ∪ R஑

ିଵ. This 
is symmetric association scheme. Note that 

 
஑෪ܦ = ஑ܦ +  ஑ෝܦ

 
are symmetric matrices. We denote by ܣሚீ௡ the Bose-Mesner algebra of {Gn, R෩) and by 
௡෢ܩ = {ܺ௨}௨∈ீ೙ the group of characters. The next theorem gives more details about 
the symmetric scheme. 

Theorem 2.3. The unitary matrix U which diagonalizes the A෩Gn is given by 
 



(ܷ)௫,௬ = ଵ
|ீ|೙|మ ܺ௫(ݕ) . 

 
The primitive idempotent ܬ ෩α, α ∈ ௡ܰ

ீ, is the matrix with  (x, y) entry 
 

௫,௬(ሚఈܬ) = ଵ
|ீ|೙   ∑ ܺ௬ି௫௭∈ீ೙

ఝ(௭)ఢ{ఈ,ఈෝ}
 (3)    . (ݖ)

 
The eigenvalues are given by 
 

෨ܲఉ(ߙ) = ܳఉ(ߙ) =   ∑ ܺ௨௭∈ீ೙

ఝ(௭)ఢ{ఈ,ఈෝ}
 (4)     (ݖ)

 
where u ∈ Gn is any word with ψ(u) ∈ {α,ߙො}. 
 

For α = (α0, …, αg|G|)∈ ௡ܰ
ீ  there holds 

௞ܭ ቌ ෍ ௚ߙ
௚∈ீ∗

ቍ = ෍ ෨ܳఉ
ఉୀ(ఉబ,…,ఉ೒|ಸ|)∈ಿ೙ಸ

ఉ೒మశ⋯శഁ೒|ಸ|సೖ 

 .(ߙ)

 
Where ܭ௞(x) is the Krawtchouk polynomial of degree k. 
 
A. Association Scheme for G = Z3. 
Let us look at an example for G = Z3 = {0, 1, 2}. For convenience we will omit a0.  
 

௡ܰ
ீ= {α – (α1, α2) : α1 + α2 ≤ n}.  

 
Thus, the number of relations in a non-symmetric scheme (ܼଷ

௡, ܴ) is |R| = 
=  ൫௡ାଶ

ଶ ൯, and the number of relations in the symmetric scheme (ܼଷ
௡,R෩) is 

 

| ෨ܴ | = ቐ
(௡ାଶ)మ

ସ
,݊݁ݒ݁ ݏ݅ ݊ ݂݅   ,

(௡ାଵ)(௡ାଷ)
ସ

, .݀݀݋ ݏ݅ ݊ ݂݅
� 

 
The polynomial ෨ܳ(ఉభ,ఉమ)൫(αଵ, ∑ = ଶ)൯ߙ ቀ ௡ିఈభିఈమ

ఉభି௣ି௦,ఉమି௤ି௧ቁ௣ା௤ஸఈభ
௦ା௧ஸఈమ
௣ା௦ஸఉభ
௤ା௧ஸఉమ

ቀ ఈభ
௣,௤ቁ ቀఈమ

௦,௧ቁ × 

× ݁ଶగ௜/ଷ(௣ା௤ା௦ା௧)(݁ଶగ௜/ଷ(௤ା௦) + (1 −  .(ఉభ,ఉమ)݁ଶగ௜/ଷ(௣ା௧)ߜ
We list here few polynomials:  
 

෨ܳ(଴,଴)൫(ߙଵ, ଶ)൯ߙ ≡ 1, 



 
෨ܳ(ଵ,଴)൫(ߙଵ, ଶ)൯ߙ = 2݊ − ଵߙ)3 +  ,(ଶߙ

 
෨ܳ(ଵ,ଵ)൫(ߙଵ, ଶ)൯ߙ = 2൫௡ିఈభିఈమ

ଶ ൯ – 
 

ଵߙ)− + ଶ)൫݊ߙ − ଵߙ) + ଶ)൯ߙ − ଶߙଵߙ + 2 ቀ
ଵߙ

2
ቁ + 2 ቀ

ଶߙ

2
ቁ, 

 
෨ܳ(ଶ,଴)൫(ߙଵ, ଶ)൯ߙ = 2൫௡ିఈభିఈమ

ଶ ൯ – 
 

ଵߙ) − + ଶ)൫݊ߙ − ଵߙ) + ଶ)൯ߙ + ଶߙଵߙ2 − ቀ
ଵߙ

2
ቁ − ቀ

ଶߙ

2
ቁ, 

 
෨ܳ(௡,଴)൫(ߙଵ, ଶ)൯ߙ = ቄ2  ݂݅ ߙଵ ≡ ,(3 ݀݋݉)ଶߙ

        .݁ݏ݈݁ 1−
� 

 
B. The Linear Programming Bound. 

For a code С∈Gn let (aγ)γ∈ ௡ܰ
ீ denote the inner distribution of C, i.e., 

 

ܽఊ =
| ෨ܴఊ ∩ ܥ × |ܥ

|ܥ|
 . 

 
Clearly, we have 
 

a(n,0,…,0) = 1, ∑ ܽఊ = ఊ∈ே೙|ܥ|
ಸ . 

 
The Delsarte's linear programming bound is given in the following theorem. 
Theorem 2.4. (LP bound) For any positive integer n and set S⊆ ௡ܰ

ீ such that  
(n, 0, ..., 0) ∈S 

 
ீܣ (݊, ܵ) ≤ �ݔܽ݉⌋ ෍ �ܽఊඏ

ఊఢே೙
ಸ

 

 
subject to the constraints  
a(n,0,…,0) = 1, 
aγ = 0 for γ∉S, 
 

෍ ෨ܳఈ(ߛ)ܽఊ ≥ 0, ߙ ∈ ௡ܰ
ீ .

ఊ∈ே೙
ಸ

 

 
Where ෨ܳఈ(ߛ) is given in (4). 
 



 
THE TERWILLIGER ALGEBRA OF (Gn, R) 

 

We will now consider the action of H on, ordered triples of words, leading to 
noncommutative algebra ࣮ீ ೙ containing the Bose-Mesner algebra. Let M,{G) be the 
following set of matrices: 

Mn(G) := Aϵℂ|ୋ|×|ୋ|: (А)୥౟,୥ౠ ∈ {0,1, … , n} and ∑ (А)୥౟ ,୥ౠ୥౟,୥ౠ = ݊}.  
For any matrix A ∈ Mn(G) we define three vectors r(A), c(A), p(A) ∈ N୬

ୋ by 

(ܣ)ݎ = ቌ෍(ܣ)଴,௚ , … , ෍(ܣ)௚|ீ|,௚
௚∈ீ௚∈ீ

ቍ, 

(ܣ)ܿ = ቌ෍(ܣ)଴,௚ , … , ෍(ܣ)௚,௚|ீ|
௚∈ீ௚∈ீ

ቍ, 

(ܣ)݌ = ൫∑ ௚,௚(ܣ) , ∑ ,௚(௚ା௚ଶ)(ܣ) … ,௚∈ீ௚∈ீ ∑ ீ∋௚,(௚ା௚|ீ|)௚(ܣ) ൯.            (5) 
To each ordered triple (x, у, z) ∈ Gn xGn x Gn we associate the matrix 
 

෠߰(x,y,z): = А௬,௭
௫ ∈  (ܩ)௡ܯ
 

where 
 

௬,௭ܣ)
௫ )௚೔,௚ೕ ≔ ห൛݇: ݕ) − ݇(ݔ = ௜݃ , ݖ) − ݇(ݔ = ݃௝ൟห . 

 
Note that ψ(y – x), ψ(z – x) and ψ(z – y) are uniquely determined by the ܣ௬,௭

௫ : 
 

ψ(y – x) = r(ܣ௬,௭
௫ ), ψ(z – x) = c (ܣ௬,௭

௫ ), ψ(z – y)=p (ܣ௬,௭
௫ ).  (6) 

 
If we define 
 
XA : = {x, y, z} ∈ Gn× Gn: ෠߰(x, y, z) = A} 
 

for A ∈Mn(G), we have the following. 
Lemma 3.1. The sets XA, A ∈ Mn(G), are the orbits of Gn x Gn x Gn under the 

action of H. 
Proof: Let x, y, z ∈ Gn and let ෠߰ (х, у, z) = A. For h = π(•) + v ∈ H we have from (1) 
 

( ෠߰(hx, hy, hz))gi,gj = |{k: (hy – hx)k = gi, (hz – hx)k = gj}| = |{k: (π(y – x))k = gi, 
 

(π(z – x))k = gj}|=|{k: (y – x)k = gi, (z –x)k = gj}| = (A)gi,g j= ( ෠߰(x,y,z))gi,gj, 
 

which implies 
 



෠߰(х, у, z) = ෠߰(hх, hy, hz) 
 

for any h∈H. 
Let A ∈Mn(G). To show that H acts transitively on XA it suffices to show that 

for every (x, y, z) ∈XA there is h∈H such that (hx, hy, hz) only depends on A. For con-
venience, we denote ψ(y – x) = α and ψ (z – x) = β. Let π0∈Sn be such that 

 
α0                 αgi             αg׀G׀ 

π0(y – x)=uα=0 … . .0ᇩᇭᇪᇭᇫ … ௜݃ ௜݃ … ௜݃ᇩᇭᇭᇪᇭᇭᇫ … ݃|ீ| … ݃|ீ|ᇩᇭᇭᇪᇭᇭᇫ. 
 

Now, let π1∈Sn be such that 
 

π1uα and π1π0(z – x) = uβ, 
 

where 

α 0. . . .0ᇩᇪᇫ
ఈబ

 
.

.. ௜݃ ௜݃ . . . ௜݃ᇩᇭᇭᇪᇭᇭᇫ
ఈ೒೔

 |݃ீ|. . . |݃ீ|ᇩᇭᇭᇪᇭᇭᇫ
ఈ೒|ಸ|

 

β 
… … |݃...|ܩ|݃...0,݅݃(ܣ)0...0

 … |ܩ|݃,݅݃(ܣ)|ܩ

 
Thus, 
 

h = π1π0(•) – π1π0(x). 
 
Denote the stabilizer of 0 ∈ Gn in H by H0. For A ∈Mn (G), let MA be the |G|n × 

|G|n matrix defined by: 
 

(MA)y,z : = ൜1, ݂݅ ෠߰(0, ,ݕ (ݖ = ,ܣ
.݁ݏ݅ݓݎℎ݁ݐ݋   ,0

� 

 
Note that 
 

஺ܯ
் = ஺೅ܯ . 

 
Let ߬ீ೙be the set of matrices 
 

෍ ,஺ܯ஺ݔ
஺∈ெ೙(ಸ)

 

 
where xA ∈ ℂ. From the Lemma 3.1 it follows that ߬ீ೙  is the set of matrices that are 
stable under permutations σ∈H0 of the rows and columns, i.e., fo any σ∈H0 and MA, 



 
(MA)y,z = (MA)σy, σz . 

 
Hence ߬ீ೙  is a complex matrix algebra called the centralizer algebra of H0. 

Since 
 

MAMB = 0 if c(A)≠ r{B) . 
 

it follows that ߬ீ೙  is a noncommutative algebra. The MA constitute a basis for ߬ீ೙ , 
and hence 
 

dim߬ீ೙ = |(ܩ)௡ܯ| = ቀ௡ା|ீ|మିଵ
|ீ|మିଵ ቁ. 

 

Note that the algebra ߬ீ೙  contains the Bose-Mesner algebra Aୋ౤; for γ∈ ௡ܰ
ீ  we 

have (recall (5)) 
  

ఊܦ = ෍ ஺ܯ ,
஺∈ெ ೙(ಸ)

೛(ಲ)సം

 

 
Let τ denote the Terwilliger algebra of the association scheme (Gn, R) (with re-

spect to 0). It is the complex matrix algebra generated by the adjacency matrices of the 
scheme {Dγ}γ∈ ௡ܰ

ீ  and the diagonal matrices {ܧఊ
∗}γ∈ ௡ܰ

ீ defined by 
 

ఊܧ)
∗)x,x : = ൜1  ݂݅ (0, (ݔ ∈ ܴఊ

݁ݏ݅ݓℎ݁ݐ݋   0
� 

 
Theorem 3.2. The algebras ߬ீ೙  and τ coincide. 
Proof: We have already seen in (7) that ߬ீ೙  contains the adjacency matrices Dγ. 

Note that  
 

ఊܧ
∗ = ఊ∆ܯ , 

 
where ∆γ= diag(γ0, γg2, …, γg|G|) ∈ Mn{G). Hence τ is a subalgebra of ߬ீ೙ . Now we 
show the reverse inclusion. For γ∈ ௡ܰ

ீ  with γgi  ≥ k and gj ∈ G, gi ≠ gj, define 
 

γ(k,gi,gj) ∈  ௡ܰ
ீ  by 

 

(γ(k,gi,gj))gl :=ቐ
௚௟ߛ   ݂݅ ݈ ≠ ݅, ݆,

௚೔ߛ − ݇ ݂݅ ݈ = ݅,
௚ೕߛ + ݇ ݂݅ ݈ = ݆.

� 

 



Also define the zero-one matrices: 
 

Nγ(k,gi,gj) = ܧఊ
∗D(n-k, 0, …, 0,k,0,….,0) ܧఊ(௞,௚೔,௚ೕ)

∗  
 

where at the index of the matrix D, k appears in the (gj – gi) coordinate. Observe that 
 

(Nγ(k,gi,gj))y,z = 1↔(0, y, z) ∈XA, 
 
Where 

(A)gl, gm = 

⎩
⎨

⎧
݈ ݂݅ ௚௟ߛ = ݉ ܽ݊݀ ݈ ≠ ݅,

݈ ݂݅    ௚೔ି௞ߛ = ݉ = ݅,
݇   ݂݅ (݈, ݉) = (݅, ݆),

.݁ݏ݅ݓݎℎ݁ݐ݋      0

� 

I.  Semidefinite Programming Bound 
 
For h ∈ H denote the characteristic vector of h(C) by X(hC) (taken as a column 

vector). For a word x ∈ Gn, let hx ∈ H be any automorphism with hx(x) = 0, and define 
 

ܴ௫ =
1

|଴ܪ|
 ෍ ܺఙ൫௛ೣ(஼)൯(ܺఙ(௛ೣ(஼)))்

ఙఢுబ

. 

 
Next define the matrices R and R' by 
 

R : =  ଵ
 |େ|   ∑ R୶,୶∈େ  

R' : =  ଵ
(|ୋ|౤ି|େ|

  ∑ R୶.୶∈ୋ౤\େ  
 

As the Rx, and hence also R and R', are convex combinations of positive 
semidefinite matrices, they are positive semidefinite. By construction, the matrices Rx, 
and hence the matrices R and R' are invariant under permutations σ ∈H0 of rows and 
columns and hence they are elements of the algebra To*. Define the numbers 

 
 |A := | (C xC хС)∩ХАߣ

 
and let 

 
 |a : = |({0}xG"xG")∩XAߤ

 
be the number of nonzero entries of Ma. It is easy to see that 
 

஺ߤ = ቆ
݊

,଴(ܣ)ݎ ௚ଶ(ܣ)ݎ , … , |ீ|௚(ܣ)ݎ
ቇ × ෑ ቆ

௚೔(ܣ)ݎ

௚೔,௚మ(ܣ),௚೔,଴(ܣ) , … , |௚೔,௚|ಸ(ܣ)

ቇ
௚೔∈ீ

 



 
 
Theorem 4.1. 
 

ܴ = ෍ ஺ܯ஺ݔ
஺∈ெ೙(ீ)

, 

ܴᇱ =
|ܥ|

௡|ܥ| − |ܥ| ෍ ൫ݔ∆௣(஺) − ஺ܯ஺൯ݔ
஺∈ெ೙(ீ)

, 

 
where 
 

஺ݔ =  .஺ߣଵି(ఓಲ|ܥ|)
Proof: Denote by (A,B) := tr(A*B), the standard inner product on the space of 

complex |Gn| x |G"| matrices. Observe that the matrices MA are pairwise orthogonal 
and that (MA,MA) = ߤА for A G Mn (G). Hence 

 

〈ܴ, 〈஺ܯ =
1

|ܥ| ෍〈ܴ௫ , 〈஺ܯ
௫∈஼

=
1

|ܥ| ෍|({ݔ} × ܥ × (ܥ ∩ ஺ܺ| =
1

|ܥ|
௫∈஼

 ஺ߣ

 
implies that 
 

෍ (ܴ)௬,௭ = ஺ߣ
(଴,௬,௭)∈௑ಲ

 

 
which is the total number of l's (with repetitions) in positions where R and MA are 
both nonzero. From the symmetry, each entry in MA is counted the same number of 
times which is (μA)-1λA. Thus the first claim follows: 
 

ܴ = ∑ ଵ
ఓಲ

〈ܴ, 〈஺ܯ = ∑ (ீ)஺஺∈ெ೙(ீ)஺∈ெ೙ܯ஺ݔ . 
 
Now, the matrix 
 

ܶ ∶= ܴ|ܥ| + ௡|ܩ|) − ᇱܴ|ܥ| = ෍ ܴ௫ =
௫∈ீ೙

=
1

|଴ܪ|
෍ ෍ ்(ఙ൫௛ೣ(஼)൯ݔ)ఙ൫௛ೣ(஼)൯ݔ = 

ఙ∈ுబ௫∈ீ೙

=
1

|଴ܪ|
෍ ෍ ்(ఙ(஼)ݔ)ఙ(஼)ݔ =

1
|଴ܪ|

෍ ்(௛(஼)ݔ)௛(஼)ݔ

௛∈ுఙ∈ுబ௫∈ீ೙

 

 



is invariant under permutation of the rows and columns by permutations h ∈ H and 
hence is an element of the Bose-Mesner algebra say 
 

ܶ = ∑ ܾఊܦఊఊ∈ே೙
ಸ . 

 
Note that for any z ∈ Gn with ψ(z) = γ, we have 
 

bγ = (T)0,z = |C|(R)0,z + (|G|n – |C|)(R')0,z . 
 
From the definition of R' 
 

ܴᇱ ≔
1

௡|ܩ|) − (|ܥ|
෍ ܴ௫

௫∈ீ೙\஼

 

 
follows that for x ∈ Gn \ C, holds 0 ≠ hx(C) and 0 ≠ σ(hx(C)) for any σ ∈ H0. There-
fore, (R')0,z = 0 and we obtain 
 

bγ = (T)0,z = |C|(R)0,z = |C|  ∑ ଴,௭(஺ܯ)஺ݔ = (ீ)஺∈ெ೙(ఊ)ݔ|ܥ| , 
 

where (γ) denotes a matrix whose first row is a vector γ and the rest of the rows are 
zero vectors. Hence we have 

 
(|G|n – |C|)R' = T – |C| R = |C|  ∑ ൫௣(஺)൯ݔ) − ஺஺∈ெ೙(ோ)ܯ(஺ݔ . 

 
Finally, note that  
 

൫௣(஺)൯ݔ = ఓ൫೛(ಲ)൯|ܥ|)
)ିଵߣ൫௣(஺)൯ =

1
జ೛(ಲ)|ܥ|

ܥ| × ܥ ∩ ܴ௣(஺)| =
ܽ௣(஺)

߭௣(஺)
= 

= ఓ∆೛(ಲ)|ܥ|)  =  .௣(஺)∆ݔ
 
Since for ߛ ∈ ௡ܰ

ீ, 
 

ം∆ߣ ∶= ቚ(ܥ × ܥ × (ܥ ∩ ܺ∆ംቚ = ෍ ෍ 1
௖ᇲ∈஼

ట(௖ᇲି௖)ୀఊ
௖∈஼

. 

 
It follows that 
 

෍ ୼ംߣ = ෍ ෍   ෍ 1
௖ᇲ∈஼

ట(௖ᇲି௖)ୀఊ

= 
௖∈஼ఊ∈ே೙

ಸఊ∈ே೙
ಸ

෍ ෍   ෍ 1
௖ᇲ∈஼

ట(௖ᇲି௖)ୀఊ
ఊ∈ே೙

ಸ௖∈஼

= ෍ ෍ 1 = ଶ|ܥ|

௖ᇲ∈஼௖∈஼

 

 



and hence we have 
 

ଶ|ܥ| = ∑ ୼ംߣ = ∑ ఓ౴ം௫౴ംఊ∈ே೙|ܥ|
ಸఊ∈ே೙

ಸ . 
 
Therefore 

|ܥ| = ෍ ୼ം௫౴ംߤ
= ෍ ቆ

݊
଴ߛ , ௚ଶߛ , … , |ீ|௚ߛ

ቇ
ఊ∈ே೙

ಸఊ∈ே೙
ಸ

୼ംݔ = ෍ ߭ఊݔ୼ം

ఊ∈ே೙
ಸ

. 

 
Now we are ready to formulate the bound. 
 
Theorem 4.2. (SDP bound) For any positive integer n and set S ⊆ ௡ܰ

ீ such that 
(n, 0,…, 0) ∈ S 

,݊)ீܣ ܵ) ≤ ቨmax � ෍ ߭ఊݔ∆ം

ఊ∈ே೙
ಸ

ቩ� 

 
subject to the constraints 

 ,ୀ ଵ (೙,బ,…,బ)∆ݔ
 

,(ܣ)ݎ}  ݂݅  ஺ ୀ ଴ݔ ,(ܣ)ܿ {(ܣ)݌ ⊈ ܵ, 
 

஺ݔ = ஺೅ݔ , 
 

ܴ ≽ 0, ܴᇱ ≽ 0. 
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Б. Маунитс  
 

НОВЫЕ ВЕРХНИЕ ГРАНИЦЫ НЕБИНАРНОГО КОДА 
 
Статья посвящена изучению верхних границ небинарных кодов. Границы можно 

получить путем линейного или полуопределенного программирования. 
 

границы, коды, программирование. 
 


