УДК 53(092.2)

А.В. Ельцов, Н.В. Коненков

В.А. СТЕПАНОВ: НЕКОТОРЫЕ ИТОГИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ

Представлена малая часть научных результатов в области плазменной, квантовой и твердотельной электроники. Приведенные работы подчеркивают приоритет рязанских (российских) ученых в указанных областях знаний и образовательном процессе.

Степанов В.А., бифуркация, газоразрядный лазер, срок службы, концентрация электронов, колебательно-волновой процесс, информационные технологии, инженерные методы проектирования, странный аттрактор, релаксационные колебания, технология герметизации.

Владимир Анатольевич Степанов — выпускник Ленинградского государственного университета имени А.А. Жданова (квалификация физик), доктор физико-математических наук, профессор, заслуженный деятель науки и техники РФ, почетный работник высшего профессионального образования РФ, почетный профессор Рязанского государственного университета имени С.А. Есенина, автор более 400 публикаций, из которых статьи в ведущих научных журналах из списка Web of Science и перечня ВАК (120 наименований), авторские свидетельства и патенты, включая патенты США и Англии (40), обзоры электронной техники (15), учебно-методические пособия (22), индекс Хирша — 7.

Интересна оценка деятельности В.А. Степанова коллективом Научно-исследовательского института газоразрядных приборов «Плазма»: «...Зна-чительная часть Вашей жизни прошла в стенах НИИ ГРП. Здесь Вы сформировались как ученый и руководитель, в числе первопроходцев разработали начала квантовой электроники, всегда находясь на передовых рубежах этой интереснейшей грандиозной работы. Вы первый в институте получили генерацию лазерного излучения...

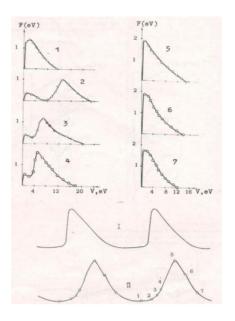
Оригинальные и всесторонние научные исследования, проведенные Вами и под Вашим руководством, заложили физические основы конструирования современных газоразрядных лазеров с излучением во всем видимом и невидимом диапазоне... которые нашли широкое применение в самых разных отраслях науки, техники и производства... создали солидную научную школу, откуда вышли способные молодые ученые, составляющие ныне элиту научной мысли Рязани. Под Вашим руководством многие сотрудники выполнили и защитили диссертации, стали ведущими специалистами в области квантовой электроники. И сегодня они, не скрывая теплых чувств и не считая излишней патетику, в один

-

[©] Ельцов А.В., Коненков Н.В., 2015

голос говорят: «Учитель, перед именем твоим позволь смиренно преклонить колени»...» 1 (Коллектив НИИ ГРП, ПЛАЗМА; 59 подписей).

«Профессор Степанов Владимир Анатольевич — несомненное явление в научном, производственном и образовательном пространстве нашего региона... — отмечает академик Российской академии образования А.П. Лиферов. — Искать новизну, не теряя при этом из виду базовых, фундаментальных основ — профессиональное кредо Владимира Анатольевича. Им он руководствовался на всех этапах своей трудовой деятельности — от главного конструктора лазеров в СССР до организатора эффективной учебно-методической работы в вузе. В любом деле он не просто генератор идей, но и мощное «зарядное устройство» для всех тех, кто работает рядом с ним. Со Степановым просто невозможно работать вполсилы, с перепадом в активности и рабочем настроении. При этом важно отметить, что подобный подход к делу Владимир Анатольевич сумел передать своим многочисленным ученикам и таким образом обеспечил столь необходимое сегодня его «тиражирование»...» ².


Тиражирование и защита диссертаций проходила в разных городах (Москва, Санкт-Петербург, Минск, Рига, Саратов, Новосибирск, Саранск, Ереван, Ташкент, Рязань) и советах (23), что обусловлено отсутствием до 1970 года в городе Рязани диссертационных советов и многообразием научно-технических задач, требующих решения в связи с развитием на предприятиях и в вузах Рязанского региона направлений вакуумной, плазменной, твердотельной, квантовой электроники и методики обучения физике. Широкий спектр часто смежных фундаментальных и прикладных проблем определил перечень специальностей (7), по которым могла быть осуществлена подготовка (руководство и активное участие) кадров высокой квалификации: докторов физико-математических наук — 6, докторов технических наук — 7, докторов педагогических наук — 31, кандидатов технических наук — 31, кандидатов технических наук — 11, которые находились в сфере научного потенциала В.А. Степанова. Защита диссертаций в разных советах и городах является хорошим критерием надежности и достоверности результатов проведенных исследований.

Из научных результатов Владимира Анатольевича Степанова можно выделить следующие:

— При исследовании распределения электронов по энергиям в тлеющем разряде в инертных газах и парах ртути его зависимости от колебательно-волновых процессов в плазме впервые (1969–1971 гг.) с опережением более чем на 30 лет было измерено распределение электронов по энергиям по длине бегущей страты (рис. 1) для широкого диапазона разрядных условий (О.Н. Орешак, В.А. Степанов).

¹ Степанов В.А. Газовые лазеры в Рязани // Как это было: к 50-летию создания лазеров (воспоминания создателей лазеров в России). М.: Лазерная ассоциация, 2010. Ч. 2. С. 128–156.

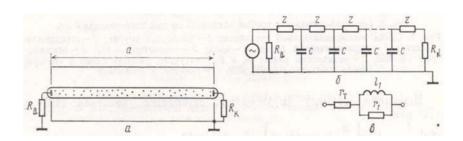
 $^{^2}$ Степанов В.А. Педагог, ученый, личность / РГУ имени С.А. Есенина. Рязань : Артикль : ПРИЗ, 2013. 292 с.

Puc. 1. Распределение электронов по энергиям, ход потенциала (I) и светового излучения (II) по длине бегущей страты смеси ртуть-аргон. Давление, мм рт. ст.: ртуть — $1,3\cdot 10^{-3}$, аргон — 0,2. Ток 200 мА. Диаметр трубки 60 мм

- На основе анализа оптических и электрических характеристик разряда и уравнений баланса исследуемых активных сред изучены механизмы заселения энергетических уровней. Впервые (1965–1967 гг.) обнаружены процессы интенсивного разрушения верхних уровней атомов ртути (смесь ртуть-криптон) за счет столкновения атомов с очень медленными электронами, определено сечение (10⁻¹¹–10⁻¹² см²) этих процессов (В.А. Степанов). Теоретически эти процессы рассчитаны и обоснованы в Физическом институте имени П.Н. Лебедева Российской академиии наук в начале 1970-х годов, являются одной из причин уменьшения (срыва) инверсии заселенности и прекращения генерации в инертных газах при увеличении, например, тока (концентрации электронов) и используются сегодня при создании рекомбинационных лазеров.
- При исследовании условий реализации инверсии заселенности в смеси гелия с неоном при возбуждении ее пучком быстрых электронов с энергией около 25 eV с помощью плоского протяженного (220х10 мм) оксидного катода получена рекордная и по сей день генерация на длине волны 1,15 мкм с мощностью излучения около 100 мВт. Впервые определены и сформулированы условия и ограничения для накачки активных газовых сред пучком быстрых электронов. Проведенные исследования позволили создать в 1966 году гелий-неоновый лазер ЛГ-116 с излучением на длине волны 1,15 мкм. В 1967 году этот лазер демонстрировался на выставке в городе Осака (Япония) (В.А. Степанов, М.К. Дятлов, Ю.Н. Куликов).

- При изучении процесса возбуждения инертных газов в сильноточном разряде в капилляре проведен уникальный, никем в мире не повторенный эксперимент и получены результаты по радиальному распределению электронов и нормальных атомов в активной среде при широком изменении условий разряда (В.В. Кюн, В.А. Степанов). Исследовались процессы и режимы охлаждения разрядного промежутка и системы питания, возможности изменения конструкции разрядной трубки и др. В результате этих исследований впервые в мире создан аргоновый лазер, кварцевый капилляр трубки которого заменен на вольфрамовую спираль длиной 250 мм. Лазер имел воздушное охлаждение и мог работать в режиме переменного тока от сети 220 В при использовании двух симметричных катодов. Разработан оригинальный, защищенный патентом способ перестройки длины волны генерации ионного лазера за счет изменения давления газа в отпаянной трубке с помощью металлического сильфона (В.В. Кюн, Т.Т. Гурьев, В.А. Степанов).
- Впервые для отечественных газовых лазеров решена комплексная проблема их инженерного компьютерного проектирования, объединяющая задачи: корпуса, резонатора, источников питания, активного элемента, систем охлаждения и стабилизации и других элементов лазеров единой идеологией, разделив их по отдельным частям (В.А. Степанов).
- Разработан унифицированный подход с использованием программ на ЭВМ к созданию источников питания для любых типов газовых лазеров с позиций нелинейного выходного радиотехнического контура, параметры элементов которого зависят от характеристик газового разряда активной среды и способов размещения разрядной трубки внутри корпуса резонатора (В.И. Пшеничников, Н.В. Коненков, В.А. Степанов).

На рисунке 2 а представлена коаксиальная система, соответствующая случаю, когда длинную разрядную трубку помещают соосно в металлическую трубу. Между плазменным шнуром и металлической оболочкой возникает «горячая» распределенная емкость, величина которой на единицу длины равна:

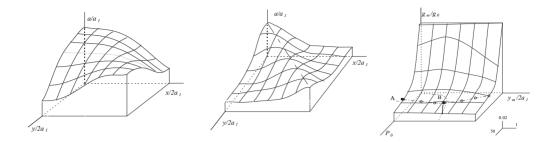

$$C = 2\pi\varepsilon_0 \varepsilon / \ln \left[\left(\frac{R_0}{r+d} \right)^e \frac{r+d}{r} \right],$$

где R_0 — внутренний радиус трубы; r — внутренний радиус разрядного канала; d — толщина стенок разрядной трубки; ε — диэлектрическая проницаемость материала разрядной трубки; $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{M}$.

Эквивалентная схема распределенной коаксиальной активной волновой и в общем нелинейной системы представлена на рисунке 2 б. На концах линии включены сосредоточенные резисторы R_a и R_k .

Величина z соответствует погонному импедансу положительного столба разряда. Условия отсутствия разрывных (релаксационных) автоколебаний определены в линейном приближении.

В качестве модели импеданса, отражающего существующие черты динамического при малых возмущениях в области частот, где Rez $(j\omega)$ < 0, можно взять цепь, показанную на рисунке 2 в.



Puc. 2. Разрядная трубка с внешней оболочкой и ее эквивалентная схема a — разрядная трубка; b — эквивалентная длинная линия; b — модель импеданса ПС

Решение поставленной задачи отражает только некоторые моменты динамического поведения рассматриваемой системы, нашедшей экспериментальное подтверждение при разработке конкретных гелий-неоновых лазеров для специальных устройств (Н.В. Коненков, Г.В. Мелехин, В.А. Степанов).

- Разработан унифицированный подход к конструированию стержневых коаксиальных резонаторов газоразрядных лазеров на примере распределенной несимметричной конструкции с сосредоточенными массами, упругими и жесткими закреплениями, учитывающей возможные в широком диапазоне параметров статистические и динамические вибрационные нагрузки (О.Г. Смиренский, В.А. Степанов).
- Разработана методика компьютерного инженерного расчета гелий-неоновых лазеров с поперечным ВЧ возбуждением, включающая в себя: модель и эквивалентную схему поперечного высокочастотного разряда в узких капиллярах; способ определения энергетического спектра электронов, расчета заселенности энергетических уровней гелия и неона и радиального распределения параметров плазмы; зависимость выходных характеристик излучения лазера от па-раметров активной среды и способов согласования с ВЧ генератором (В.А. Оськин, В.А. Степанов).
- Разработаны компьютерные методы расчета активной среды и параметров (коэффициента усиления и мощности излучения) гелий-неоновых, аргоновых, гелий-кадмиевых, азотных и СО₂-лазеров в зависимости от параметров активной среды (давление, ток, диаметр и длина разрядной трубки, соотношение компонентов смеси и т. д.), учитывающие влияние различных видов резонаторов, степени диссоциации газов в разряде и т. д. (С.И. Мольков, В.И. Новиков, В.А. Степанов).

В качестве примера на рисунках 3 и 4 приведены результаты, учитывающие влияние однородного и неоднородного уширения при создании мощных (несколько Вт) одночастотных аргоновых лазеров на ионизированных переходах. (В.Ф. Быковский, С.И. Мольков, В.А. Степанов, В.С. Хилов, С.И. Хилов).

Puc. 3. Зависимость отношения $a/a_1 = \Delta v_L/\Delta v_{L0}$, характеризующего ширину линии генерации от частот x/2a и y/2a, при разных значениях нормированной интенсивности линии P_1 : 100 (a), 10 (б)

Puc. 4. Зависимости коэффициента усиления g_m/g_0 от расстройки частоты $y_m/2a$ и нормированной интенсивности P_0 при значениях $I_1/I_0=10$ и $a_1=0,1$ — зависимость оптимальной расстройки $(y_m/2a)^{opt}$ от P_0

- Комплекс работ по изучению физических процессов, способа возбуждения, поддержания равномерности горения разряда и стабильности состава газа в течение длительного периода времени позволили разработать инженерный компьютерный метод расчетов параметров и создать первый отечественный малогабаритный отпаянный ТЕА-СО₂-лазер (Б.А. Козлов, В.Н. Коротченко, В.А. Степанов).
- Комплекс работ по исследованию колебательно-волновых процессов в тлеющем разряде, в гелий-неоновой и гелий-кадмиевой смесях позволил установить механизмы образования стратовых и релаксационных колебаний, условия возникновения бифуркационных стохастических колебаний и связь их с параметрами активных элементов (ток, давление, соотношение компонентов, диаметр трубки и т. д.) с режимами их технологической обработки, характеристиками холодных катодов (М.В. Чиркин, В.А. Степанов, Л.С. Александров, А.Ф. Маннанов, Д.А. Морозов).

На рисунке 5 приведены фазовые портреты и спектры колебаний тока разряда. В плазме возбуждается несколько автоколебательных мод, которым соответствуют гармоники в диапазоне частот 800–1200 кГц. Кроме того, в низкочастотной области спектра имеются колебания, соответствующие разностным частотам страт, глубина модуляции тока в которых значительно превышает глубину модуляции тока на основных частотах страт. Математическим образом таких колебаний в фазовом пространстве системы является инвариантный двумерный тор. В диапазоне токов 5,0–5,8 мА существуют два устойчивых состояния системы, каждая из которых представляет собой двухчастотные квазипериодические коле-

бания. Проекции этих колебаний двумерных торов на экран осциллографа приведены на рисунке 5 а. б. Переход из одного состояния в другое происходит скачкообразно и хаотически в течение от нескольких минут до нескольких секунд. Дальнейшее увеличение тока приводит к прекращению переключения системы из одного состояния в другое. После перехода через пороговое значение тока (6,1 мА) в низкочастотной области появляется интенсивный участок сплошного спектра (рис. 5 в). Гармоники, соответствующие отдельным модам стратовых колебаний, превращаются в линии с конечной шириной. Наблюдаемая в данном случае бифуркация представляет собой разрушение двумерного тора, вместо которого в фазовом пространстве возникает странный аттрактор.

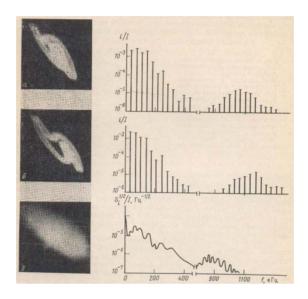


Рис. 5. Фазовые портреты и спектры колебаний в плазме: двумерные торы с разностными частотами $34.75 \text{ к}\Gamma\text{ц}$ (a) и 35.50 (б) при I = 5.4 мA; странный аттрактор (в) при токе I = 6.2 мA;

I — переменная и постоянная составляющая тока разряда;

S_i — спектральная плотность шума тока в разряде

Механизм перехода к хаосу в положительном столбе разряда подтверждает общий характер закономерностей возникновения стахостичности и для других автоколебательных систем (Г.В. Мелехин, И.Ю. Москвичева, В.А. Степанов, М.В. Чиркин).

- Проведенные исследования колебательно-волновых процессов позволили установить корреляцию между амплитудой, частотой и видом колебаний с ресурсом гелий-неоновых линейных и кольцевых лазеров, что дало возможность разработать технологию изготовления холодных катодов с минимальной работой выхода и неразрушающие методы и аппаратуру, не имеющие аналогов для ускоренного контроля ресурса этих лазеров. Технология изготовления холодных катодов для линейных и кольцевых гелий-неоновых лазеров и методика неразрушающего контроля качества отдельных элементов, приборов в целом и технологических процессов изготовления внедрена в производстве НИИ ГРП, Львовского НПО «Полярон» и ЗАО «Завод Лазеравиа» (г. Серпухов, Московская область) (М.В. Чиркин, Д.А. Морозов, О.Н. Крютченко, В.А. Степанов).

- Впервые разработана технология и оборудование для герметизации активных элементов с помощью лазерной заварки окон из оптического стекла ЛК-4 со стеклом C52-1 (А.М. Кодылев, В.А. Степанов, И.И. Косарев.).
- Использование компьютерных методов расчета активной среды и параметров лазеров на ионизированных инертных газах (С.И. Мольков, В.А. Степанов) и наличие технологий пайки металлокерамических активных элементов из бериллиевой керамики и технологии заварки оптических окон из ЛК-4 со стеклом позволило провести комплекс научно-технологических работ по унификации активных элементов и узлов, разработке инженерных методов конструирования лазеров на ионизированном аргоне и криптоне нового поколения с повышенной надежностью и долговечностью (В.А. Хохулин).
- Наглядным примером хорошего взаимодействия науки и производства и реализации комплексного подхода при разработке и внедрении инженерных методов проектирования газовых лазеров служит также создание волноводного щелевого СО₂-лазера с поперечным ВЧ возбуждением. Работа продолжалась в течение нескольких лет (с 2001 по 2009 год). За это время разработаны методы расчета неустойчивых резонаторов и их влияние на выходные характеристики щелевых волноводных СО₂-лазеров, изучены процессы и возможности стабилизации газового состава, влияние и способы поддержания устойчивого ВЧ разряда, унифицированные технологические процессы пайки и герметизации и др. (Е.Ф. Шишканов, С.И. Мольков, В.Н. Очкин, В.А. Степанов). Результатом этой комплексной научно-конструкторско-технологической работы является разработка одночастотного волноводного цельнопаяного металлокерамического СО₂-лазера LCDР-200 (Е.Ф. Шишканов, В.В. Кюн) с рекордной удельной мощностью излучения 200 Вт при длине излучателя 720 мм и долговечностью 2000 часов.
- С единых методологических позиций проведен комплекс теоретических и экспериментальных исследований, позволивший разработать основы создания высокоточных лазерных измерителей контурных размеров сложных крупногабаритных деталей, лазерных триангуляционных измерителей, способных измерять профиль деталей, имеющих фрактальные поверхности с различной шероховатостью и наличием локальных дефектов, эффективных внешних средств стабилизации мощности лазерного излучения (В.Н. Демкин, В.А. Степанов). На основе теоретических и экспериментальных исследований разработана серия высокоточных лазерных измерителей по параметрам, не уступающим лучшим зарубежным аналогам и успешно внедренных в технологические процессы производства в железнодорожном транспорте, строительных материалов, машиностроения (В.Н. Демкин).
- Комплекс теоретических и экспериментальных исследований излучения твердотельного Nd:YAG лазера с накачкой лазерными диодами позволил впервые

установить влияние наведенного двулучепреломления в кристалле лазера на параметры излучения; выработаны рекомендации по их совершенствованию для различных оптических систем (О.Л. Головков, Г.А. Купцова, В.А. Степанов).

- Предложены методика и модель расчета времени релаксации электронных носителей при электронных взаимодействиях с учетом стохастических автоколебаний в InAs/AlSb наноструктурах. Определены впервые условия и механизмы, обеспечивающие низкие времена релаксации носителей в системе InAs/AlSb. Важным с практической точки зрения для создания быстродействующих приборов среднего ИК диапазона является определение квантового времени релаксации электронов, которое составляет $\sim 10^{-14}$ - 10^{-15} c (М.М. Афанасова, В.А. Степанов).
- Разработана впервые технология гетероструктур CdS/Si на основе гидрохимического осаждения CdS и модель, объясняющая механизмы токопереноса в гетероструктуре CdS/Si в зависимости от плотности поверхностных состояний (В.В. Трегулов, Г.Н. Скопцова, В.А. Степанов).
- Разработана не имеющая аналогов статистическая педагогическая модель интеллектуального испытания учащихся. Педагогические и статистические параметры олимпиадного задания, рассчитанные в двух- и трех-уровневом вариантах, и разработанная методика испытания школьников региональных олимпиад способствуют переводу их впервые в режим талантосбережения с сохранением всего ценного, что накопила Всероссийская олимпиада за многие годы своего существования. Применение ее в Рязани позволило в течение нескольких лет победителям областных туров быть призерами зональных туров и членами сборной России на международных физических олимпиадах.

Созданы комплекты физических олимпиадных задач, опубликованные в 10 выпусках сборника «Рязанские физические олимпиады», а также сборник экспериментальных задач по физике, банки физических задач в интернете (Б.С. Кирьяков, Н.И. Ермаков, Д.В. Морин, С.Г. Моисеев, В.А. Степанов).

- Разработана концепция интегративного подхода к осуществлению школьного учебного физического эксперимента в единстве четырех ее направлений: межпредметной, внутрипредметной, межличностной и внутриличностной интеграции (А.В. Ельцов, В.А. Степанов).
- Разработаны защищенные патентами индивидуальное рабочее место учащегося (рис. 6), обеспечивающее широкую функциональную возможность действий учащихся во время урока, создающее благоприятные условия для осуществления разнообразных приемов и методов личностно ориентированного обучения, и многофункциональный модульный блок приборов, позволяющий по всем разделам школьного курса физики сделать вариативными большинство учебных экспериментов (А.В. Ельцов, В.А. Степанов, С.В. Мурзин).

Рис. 6. Индивидуальное рабочее место учащегося

- Комплекс работ по расширению возможностей использования компьютерных информационных технологий и принципов системности и наглядности при изучении физики и технических дисциплин позволил разработать не имеющие аналогов учебные видеофильмы («Холодная штамповка», «Лазерные технологии обработки материалов», «Ковка металла», «Литье», «Вакуумное напыление», «Порошковое покрытие», «Лазерная резка металлов» и др.), мультимедийные средства, обучающие и контролирующие программы, предусматривающие использование различных видов учебного эксперимента: демонстрационного, численного, натурного, автоматизированного (В.И. Доронин, И.А. Захаркин, В.А. Степанов, А.В. Ельцов, О.В. Кузнецова, А.М. Шуйцев, Е.В. Овчинникова).
- Формирование компетенции специалистов впервые представлено в рамках многомерной, многоуровневой системы непрерывного образования при изучении физики и инженерно-технологических дисциплин: от среднего общего и специального образования; бакалавров и магистров в условиях высшего профессионального образования до послевузовского образования при организации курсов повышения квалификации (рис. 7). Многомерная образовательная среда впервые представлена в виде спирали качества, обеспечивающей непрерывную связь образовательных, воспитательных и управленческих видов деятельности на всех уровнях физического и инженерно-технологического образования (В.А. Степанов, Н.Б. Федорова, Е.В. Овчинникова, О.В. Кузнецова).

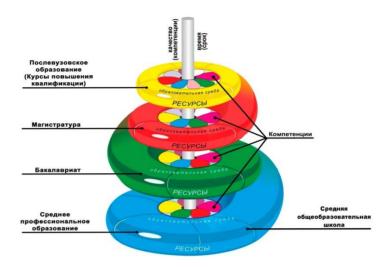


Рис. 7. Спираль качества

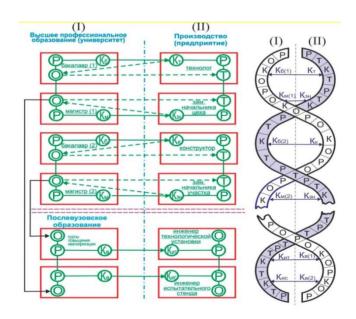


Рис. 8. Двойная спираль качества

Связь образовательной среды с производством представлена впервые в виде двойной спирали, качество подготовки специалистов которой определяется эффективностью обратных связей между вузом и предприятием (рис. 8). Двойная спираль качества является неким ДНК вуза, характеристикой его эффективности; имеет протяженность, зависящую от количества направлений подготовки, лицензированных и аккредитованных вузом, и количество предприятий, с которыми заключены долговременные договоры (В.А. Степанов, Н.Б. Федорова, Е.В. Овчинникова).

— Организация научно-образовательного центра (консорциума) «Лазерные системы, нанотехнологии и методы диагностики» («МЕРА») с участием промышленных предприятий, обеспечивающего интеграцию образования, науки и производства, расширяющего научно-исследовательскую и научно-технологическую базу для повышения качества подготовки специалистов; возможность участия Рязани в работах Лазерной ассоциации и технологической платформы «Фотоника» с привлечением студентов и молодых ученых по современным направлениям наноэлектроники, лазерной техники и ресурсосбережения (В.А. Степанов, Е.Я. Черняк, В.Н. Демкин, Е.Б. Трунин, С.И. Хилов).

Научные результаты В.А. Степанова и его учеников обеспечили высокий имидж созданной им научной школы по физике низкотемпературной плазмы, колебательно-волновым процессам, технике и технологии газоразрядных лазеров, а также высокий уровень, качество (долговечность до 100 тыс. часов) и известность разработанных и освоенных в производстве приборов в России и за рубежом (Белоруссия, Украчина, Узбекистан, Латвия, США, Германия, Япония, Канада, Корея и др.); позволили продолжить, развить и многократно приумножить успехи рязанской методической школы профессора В.П. Орехова по обучению физике в школе и вузе, созданию системы непрерывного физического и инженерно-технологического образования; способствовали превращению Рязани в один из ведущих лазерных городов и один из активно действующих центров методической школы России.

В.А. Степанов за вклад в создание научной базы и производство газовых лазеров в Рязани награжден знаком Великого князя Олега Рязанского, серебряной медалью имени академика В.Ф. Уткина, премией победителя конкурса научных работ, посвященного памяти академика В.Ф. Уткина, медалью «За заслуги перед предприятием ОАО "Плазма"».

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ЭЛЕКТРОННЫХ РЕСУРСОВ

- 1. Степанов, В.А. Газовые лазеры в Рязани [Текст] // Как это было: к 50-летию создания лазеров (воспоминания создателей лазеров в России). М. : Лазерная ассоциация, 2010. Ч. 2. С. 128–156.
- 2. Степанов, В.А. Гибридный неустойчиво волноводный резонатор и выходные характеристики CO_2 лазера ВЧ возбуждением [Текст] / В.А. Степанов, С.И. Мольков, Г.Ф. Шишканов // ЖПС. 199. Т. 66, № 6. С. 784—791.
- 3. Степанов, В.А. Лазерные методы и средства контроля геометрических размеров деталей [Текст] / В.А. Степанов, В.Н. Демкин // Измерительная техника. 2007. № 11. С. 84—89.
- 4. Степанов, В.А. Учет скорости релаксационных переходов между подуровнями мультиплета в спектре генерации YAG÷ND-лазера [Текст] / В.А. Степанов, О.Л. Головков, Г.А. Купцова // Научно-технические ведомости С.-Петерб. ГПУ. Физико-математические науки. 2014. № 3/201. С. 74–80.
- 5. Степанов, В.А. Физические олимпиады как массовое соревнование школьников [Текст] / В.А. Степанов, Б.С. Кирьяков // Наука и школа. 1999. № 6. С. 41–46.

- 6. Степанов, В.А. Совершенствование оборудования школьного кабинета для проведения современного физического практикума [Текст] / В.А. Степанов, А.В. Ельцов, С.В. Мурзин, В.В. Трегулов // Физическое образование в вузах. 2002. Т. 8, № 3. С. 103—107.
- 7. Степанов, В.А. Учебный видеофильм «Литье металла» [Электронный ресурс] / В.А. Степанов, В.И. Доронин, С.А. Булыгин, А.М. Шуйцев // Свидетельство о регистрации электронного ресурса № 18415. 2012. № 6/37. С. 19. Режим доступа: http://ofermio.ru/portal/newspaper.php
- 8. Степанов, В.А. Формирование компетенций учителей физики в многомерной системе непрерывного образования [Текст] / В.А. Степанов, О.В. Кузнецова, Е.В. Овчинникова, Н.С. Пурышева, Н.Б. Федорова // Российский научный журнал. 2013. № 2/33. С. 89–103.
- 9. Степанов, В.А. Многоуровневая система непрерывной подготовки специалистов профессионального образования и ее связь с производством [Текст] / В.А. Степанов, Н.Б. Федорова, Е.В. Овчинникова // Известия РАН. 2013. № 3. С. 97–108.
- 10. Степанов, В.А. Педагог, ученый, личность [Текст] / РГУ имени С.А. Есенина. Рязань : Артикль : ПРИЗ, 2013. 292 с.
- 11. Степанов, В.А. Повышение качества подготовки специалистов по нанотехнологии в РГУ через научно-образовательный центр [Текст] / В.А. Степанов, Н.В. Коненков, Е.Н. Моос, Е.Я. Черняк // Школа будущего. 2009. № 3. С. 90–95.
- 12. Степанов, В.А. Распределение электронов по энергиям и процессы возбуждения в движущихся стратах в положительном столбе разряда [Текст] / В.А. Степанов, О.Н. Орешак, Е.П. Остапенко // Обзоры по электронной технике. М. : Изд-во ин-та «Электроника», 1969. 75 с.
- 13. Степанов, В.А. Исследование процессов возбуждения в протяженном диоде [Текст] / В.А. Степанов, М.К. Дятлов, Ю.Н. Куликов, Е.П. Остапченко. Ч. 1–2 // Оптика и спектроскопия. 1970. Т. 29. Вып. 3. С. 471–457; Вып. 4. С. 632–637.
- 14. Степанов, В.А. Измерение распределения атомов и электронов в сильноточном разряде по сечению капилляра [Текст] / В.А. Степанов, Т.Т. Гурьев, В.В. Кюн, Е.П. Остапченко // Журнал технической физики. 1970. Т. 11. Вып. 4. С. 781–785.
- 15. Степанов, В.А. Условия отсутствия разрывных колебаний в системе положительный столб разряда внешняя металлическая оболочка [Текст] / Н.В. Коненков, Г.В. Мелехин, В.А. Степанов // Радиотехника и электроника. —1985. Т. ХХХ. Вып. 2. С. 346—351.
- 16. Степанов, В.А. Мощный источник когерентного излучения для оптической голографии и рамановской спектроскопии [Текст] / В.А. Степанов, В.Ф. Быковски, С.И. Мольков, В.С. Хиллов, С.И. Хиллов // Научно-технический вестник С.-Петерб. ГПУ. Сер. Физико-математические науки. 2013. № 1. С. 71–79
- 17. Степанов, В.А. Влияние колебательных процессов в плазме газоразрядных лазеров как источник диагностической информации [Текст] / В.А. Степанов, М.В. Чиркин // Научное приборостроение. РАН. 1992. —Т. 2, № 3. С. 7–20.
- 18. Степанов, В.А. Закономерности возникновения хаоса при разрушении квазипериодического режима генерации страт в положительном столбе газового разряда [Текст] / В.А. Степанов, И.Ю. Москвичева, Г.В. Мелехин, М.В. Чиркин // Радиотехника и электроника. — 1986. — Т. 31, № 129. — С. 1176–1181.
- 19. Stepanov, V.A. The stability of the active medium of RF-exited CO₂ lasers with gold as catalyst [Tekct] / V.A. Stepanov, V.M. Cheresov, M.Z. Novgorodov, V.N. Ochkin, E.F. Shishkanov // Appl. Phy. B. lasers and Optics. 2000. Bd. 71. P. 503–508.

20. Stepanov, V.A. The role of electron-electron and electron-phonon interactions in the processes of dest of landau quantization in InAs/AlSb nanostructures [Tekct] / V.A. Stepanov, M.M. Afanasova // Russian Physics Journal. — 2009. — Vol. 52, Iss. 8. — P. 789–794.

REFERENCES

- 1. Stepanov, V.A. Gazovyelazery v Ryazani [Text] // Kak ehto bylo: k 50-letiyu sozdaniyalazerov (vospominaniya sozdateley lazerov v Rossii) [Text] [There are gas lasers in Ryazan // How it was: the 50th anniversary of the creation of lasers (creators' lasers memories in Russia]. Moscow: Laser association, 2010. Part 2. P. 128–156.
- 2. Stepanov, V.A. Zakonomernosti vozniknoveniya khaosa prirazrusheniikvazi periodicheskogo rezhima generatsiistrat v polozhitel'nom stolbegazovogorazryada [The rules of the occurrence of chaos in the destruction of a quasiperiodic mode of strata oscillation in the positive column of a gas discharge] [Text] / V.A. Stepanov [et al.] // Radiotekhnika i ehlektronika. Technology and Electronics. 1986. Vol. 31, N 129. P. 1176–1181.
- 3. Stepanov, V.A. Gibridnyy neustoychivovo lnovodnyy rezonatori vykhodnye kharakteristiki SO2 lazera VCH vozbuzhdeniem [The hybrid unstable waveguide resonator and the output characteristics of CO2 laser by high frequency excitement] [Text] / V.A. Stepanov, S.I. Mol'kov, G.F. Shishkanov // ZHPS. 199. Vol. 66, N 6. P. 784–791.
- 4. Stepanov, V.A. The stability of the active medium of RF-exited CO2 lasers with gold as catalyst [Text] / Stepanov V.A. [et al.] // Appl. Phy. B. lasers and Optics. 2000. Bd. 71. P. 503–508.
- 5. Stepanov, V.A. Lazernye metody i sredstva kontrolya geometricheskikh razmerov detaley [Laser techniques and controls the geometric dimensions of details] [Text] / V.A. Stepanov, V.N. Demkin // Izmeritel'naya tekhnika-Measuring equipment. 2007. N 11. P. 84–89.
- 6. Stepanov, V.A. Uchet skorosti relaksatsionnykh perekhodov mezhdu podurovnyamimul'tipleta v spektre generatsii YAG÷ND-lazera [Accounting rate of relaxation transitions between the sublevels of a multiplet in the spectrum generation YAG÷ND-laser] [Text] / V.A. Stepanov, O.L. Golovkov, G.A. Kuptsova // Nauchno-tekhnicheskie Vedomosti SPbGPU. Fiziko-matematicheskie nauki Scientific and technical journal of SPbSTU. Physics and mathematics. 2014. N 3/201. P. 74–80.
- 7. Stepanov, V.A. The role of electron-electron and electron-phonon interactions in the processes of dest of landau quantization in InAs/AlSb nanostructures [Text] / V.A. Stepanov, M.M. Afanasova // Russian Physics Journal. 2009. Vol. 52, Iss. 8. P. 789–794.
- 8. Stepanov, V.A. Fizicheskie olimpiady kak massovoe sorevnovanie shkol'nikov [Physical Olympics as the massive competition for pupils] [Text] / V.A. Stepanov, B.S. Kir'yakov // Nauka i shkola Science and school. 1999. N 6. P. 41–46.
- 9. Stepanov, V.A. Sovershenstvo vanie oborudovaniya shkol'nogo kabineta dlya provedeniya sovremennogo fizicheskogo praktikuma [Improving the laboratories' equipment for modern physical practicum] [Text] / V.A. Stepanov [et al.] // Fizicheskoe obrazovanie v vu-zakh. hysics in Institution of Higher Education. 2002. Vol. 8, N 3. P. 103–107.
- 10. Stepanov, V.A. Uchebnyy videofil'm «Lit'emetalla» [Electronic resource] / Stepanov V.A. [et al.] // Svidetel'stvo o registratsii ehlektronnogo resursa N 18415 [Training video "Metal Casting" certificate of registration of an electronic resource N 18415]. 2012. N 6/37. P. 19. Rezhim dostupa: http://ofermio.ru/portal/newspaper.php

- 11. Stepanov, V.A. Formirovanie kompetentsi yuchiteley fiziki mnogomernoy sisteme nepreryvnogo obrazovaniya[Formation of competence of teachers of physics in a multidimensional system of continuous education] [Text] / V.A. Stepanov [et al.] // Russian scientific journal. 2013. N 2/33. P. 89–103.
- 12. Stepanov, V.A. Pedagog, uchenyy, lichnost' [The teacher, the scientist, the person] [Text] / Ryazan Izd-vo RGU im. S.A. Esenina Publishing house of Ryazan State University named for S.A. Yesenin. Ryazan: Artikl': PRIZ, 2013. 292 p.
- 13. Stepanov, V.A. Mnogourovnevaya Sistema nepreryvnoy podgotovki spetsialistov professional'nogo obrazovaniya i ee svyaz' s proizvodstvom [Multilevel system of continuous training of experts of vocational education and its connection with the production] [Text] / V.A. Stepanov, N.B. Fedorova, E.V. Ovchinnikova // Izvestiya RAN Bulletin of the Russian Academy of Sciences. N 3. P. 97–108.
- 14. Stepanov, V.A. Povysheniekachestvapodgotovkispetsialistovponanotekhnologii v RGU cherez Nauchno-obrazovatel'nyy Tsentr[Improving the quality of training of experts in the sphere of nanotechnology in RSU with help of Research and Education Center] [Text] / V.A. Stepanov [et al.] // Shkola buduschego School of the Future. 2009. N 3. P. 90–95.
- 15. Stepanov, V.A. Raspredelenie ehlektronov po ehnergiyam iprotsess yvozbuzhdeniya v dvizhuschhikh syastratakh v polozhitel'nom stolbe razryada / V.A. Stepanov, O.N. Oreshak, E.P. Ostapenko // Obzor po ehlektronnoy tekhnike. [Electron energy distribution and process of excitement in moving strata in the positive column discharge. References of Electronics]. Moscow: Publishing House of the Institute of the "Electronics", 1969. 75 p.
- 16. Stepanov, V.A. Issledovanie protsessov vozbuzhdeniya v protyazhennom diode. Part 1–2. [Investigation of the processes of excitement in an extended diode. Part 1–2] [Text] / V.A. Stepanov [et al.] // Optika i spektroskopiya Optics and spectroscopy. 1970. Vol. 29. Ed. 3. P. 471–457; Ed. 4. P. 632–637.
- 17. Stepanov, V.A. Izmerenie raspredeleniya atomov I elektronov v sil'notochnom razryadeposecheniyu kapillyara [Measuring of atoms and electrons distribution in high-current discharge over the cross section of the capillary] [Text] / V.A. Stepanov [et al.] // Zhurnal tekhnicheskoy fiziki [Journal of applied physics]. 1970. Vol. 11. Ed. 4. P. 781–785.
- 18. Konenkov, N.V. Usloviya otsutstviya razryvnykh kolebaniy v sisteme polozhitel'nyjstolb razryada vneshnyaya metallicheskaya obolochka [Conditions of the absence of discontinuous oscillations in the positive column of a discharge the outer metal shell] [Text] / N.V. Konenkov, G.V. Melekhin, V.A. Stepanov // Radiotekhnika i ehlektronika-Technology and Electronics. 1985. Vol. XXX. Ed. 2. P. 346–351.
- 19. Stepanov, V.A. Moschny yistochnik kogerentnogo izlucheniya dlya opticheskoy golografiiiramanovskoy spektroskopii [Powerful source of coherent radiation to optical holography and Raman spectroscopy] [Text] / V.A. Stepanov [et al.] // Nauchno-tekhnicheskiy vestnik SPbGPU. Ser. Fiziko-matematicheskie nauki Scientific and Technical bulletin of SPbSTU. Series. Physics and mathematics. 2013. N 1. P. 71–79.
- 20. Stepanov, V.A. Vliyanie kolebatel'nykh protsessov v plazmegazorazryadnykh lazerov kak istochnik diagnosticheskoy informatsii[Influence of oscillating processes in the plasma of gas discharge lasers as a source of diagnostic information] [Text] / V.A. Stepanov, M.V. Chirkin // Nauchnoe priborostroenie. RAN. Scientific instrumentation. Russian Academy of Sciences. 1992. Vol. 2, N 3. P. 7–20.