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HUCKYCCTBEHHBI UHTEJUIEKT
N HEKOTOPBIE OCOBEHHOCTHU MbBIIIJIEHUA
TP PEHLIEHUU HEBBIYUCJIUMBIX 3AJIAY

B cratee mpuBeneHO CpaBHEHWE THIIOTE3bl CHIIBHOTO HCKYCCTBEHHOTO WHTEIUIEKTA, IIPEIIIOJararomiero
BO3MO)KHOCTB BOCIPOHM3BEICHHSI BCEX CTOPOH YEJIOBEYECKOI0 MHTEIUIEKTA C IOMOUIBIO MPSIMOro MPOrpaMMHUPOBaHHS U
TUIIOTE3bl  CJIA00r0 HMCKYCCTBEHHOTO HHTEUICKTa, OTPHULAIONIEH BO3MOXXHOCTh BOCHPOM3BECHHS C TMOMOIIBIO
JIITOPUTMOB CITOCOOHOCTEH! UeltoBeKa K TBOPUECTBY U CO3IaHHIO HOBOM MH(OpMAIIUHL.

[lpuBenen psig  10OKAa3aTeNbCTB  MPABHIBHOCTH THUIOTE3Bl  CIIA0OTO0 HCKYCCTBEHHOTO HMHTEIUICKTA.
JlokazaTenbcTBa CQOPMYIMPOBAHBI B BUJE TEOPEM M OCHOBAaHBI Ha TEOPHHM HH(OPMAIMU, TEOPHU CIOKHOCTH,
TEOPUHU HEBBIYUCIUMBIX 33/1a4. OCcOOEHHO YacTo aBTOp HCHOJb3yeT NOHITHE O HEBBIYMCIUMOMN 3aj1aye, KOTOPYIo, IO
OITpeIeTICHUI0, HEBO3MO)KHO PEIINUTD C IOMOIIHI0O KOHEYHOTI'O JITOPUTMA.

[MomguepkuyTo paznuuune nonxona lllenHoHa k mHpopmarmu ot noaxoxa Kommoroposa. IlleHHOHOBCKHE
(OpMynBl TIO3BOJISIIOT OMPENENUTh IMTOTEHIUANBHYI0 WH()OPMAIMOHHYIO €MKOCTh CHTHajla MM TEKCTa, HO He
OIIPEJIETISIIOT HMX peallbHOE CMBICIOBOE cojepkaHue. KonMmoropoBckuit momxon kK uHpopmanuu TpeOyeT mnpu
OITpe/IeJIeHUH KOJIMYecTBa HMH(POPMAIIMU B TEKCTE PEIICHNS] HEBBIYUCIMMOM 3a]auH, a 9TO, B CBOIO OU€pe/ib, TPEOYyeT
peabHOr0 TIOHUMAaHUS COJIEPKaHMs TEKCTa.

Takum 00pa3oM KOJIMOTOpPOBCKMH IMOAXON K HWH(OpMAaUM B OTIMYHE OT IIEHHOBCKOI'O CBS3aH
C YeJIOBEYECKHM MBIIUIEHHEM. DTOT (PaKT MO3BOJISIET PACIPOCTPAHUTD CTPOTHE MAaTEMaTHUECKUE COOTHOLICHUs Ha
HEKOTOpPbIe OCOOEHHOCTH YEJIOBEYECKOTO MBIIIIICHHSI.

[MokazaHo, 4TO HOBasi MH(pOPMALMS CO3JACTCS TOJBKO IMPHU PEUICHHHM HEBBIUYUCIMMBIX 33ja4 JHOO B
SKCIIEpUMEHTE. AJITOPUTMHUYECKOE PElIeHHE 3a]a4ll HOBOH MH(pOPMAIMU HE CO3/1aeT.

Hcxoast w3 WM3NOXKEHHBIX TNPENCTABICHHH ClellaH BBIBOX O TOM, YTO HCKYCCTBEHHBIH WHTEIIEKT,
CHOCOOHBIH K TBOPYECTBY M CO3/IaHHIO HOBOW MH(OpMAIINK, HE MOXKET OBITH CO3[]aH C TIOMOIIBIO0 METOAOB IPSIMOTO
MIPOrpPaMMHPOBAHUS M €0 CO3IaHHe CaMo MO ceOe SBISIETCS] HEBBIYMCINMON 3a/1a4ei.

UCKYCCTNBEHHbI  UHMENNIeKM, NPOSPAMMUPOSAHUE;, aneopumm; uHpopmayus; nooxoo Koamozoposa;
no0xo0 Lllennona

The article compares the hypothesis of Strong Artificial Intelligence, which suggests the
possibility of replicating human intelligence through direct programming, with the hypothesis of Weak
Artificial Intelligence, which denies the possibility of algorithmically replicating human ability to create
and produce new information.

The article provides some evidence to prove the hypothesis of Weak Artificial Intelligence. The
proofs are formulated as theorems.

The proofs are proofs based on information theory, complexity theory, the theory of non-
computable problems. The concept of non-computable task, which cannot be solved with the help of a
finite algorithm by definition, is used especially often in the article.

The difference between the Shannon approach and the Kolmogorov approach to information is
emphasized.
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Shannon formulas make it possible to determine the potential information capacity of a signal or
text, but they do not determine the real semantic content of this signal or text. The Kolmogorov approach
to information requires the solution of an non-computable problem for determination of the amount of
information in the text. And in turn this requires a real understanding of the content of the text.

Thus, the Kolmogorov approach to information is essentially connected with the peculiarities of
human thinking. This fact allows us to extend rigorous mathematical relationships to some aspects of
human thinking.

It is shown that new information is being created only when solving non-computable problems, or in
an experiment. Algorithmic solution of the problem does not create the new information.

Based on the presented views, it was concluded that artificial intelligence capable of creativity
and creating new information cannot be created using direct programming methods and its creation is a
non-computable problem itself.

Almost in all countries of the world, some work is being done to increase the proliferation of
computer technology in all spheres of human activities, such as the Internet, banking, chess,
communication, and even driving. The development of advanced software technologies shows that we
will eventually create software and hardware capable of replicating human behavior and thinking
(including intuition, creativity and the ability of a person to create and discover new information in the
process of intellectual activities). Such an ideology is called the theory of Strong Artificial Intelligence
[1]. However, some scientists [2] believe that people’s consciousness cannot be reduced to formal logic
and algorithms, even though it includes them. This is the theory of Weak Artificial Intelligence.
According to this theory, human thinking can never be replicated by means of direct programming.

There is another area of scientific research where the problem of choosing between Strong and
Weak Artificial Intelligence is also very relevant. In some countries, scientists attempt to model virtual
neural networks and, in fact, to create an artificial cortex [3—5]. There is a reason to suppose that in the
next twenty years scientists will manage to create a human-like virtual brain. Hence, there is an issue of
whether a virtual brain can be taught to think through direct programming or through education in human
environment.

The discussion has been going on for several decades. If there were a mathematical theory of human
consciousness, it could be relied upon in deciding in favor of Strong Artificial Intelligence or in favor of
Weak Artificial Intelligence, but, unfortunately, such theory does not exist.

However, in the twentieth century, due to the efforts of a number of outstanding mathematicians
(Godel, Turing, Shannon, Von Neumann, Kolmogorov), the outlines of mathematical information theory,
complexity theory, and the theory of non-computable problems were established. For the purposes of this
article, the concept of a non-computable problem, which, by definition, cannot be solved with the help of
a finite algorithm, seems particularly interesting.

The impetus for the development of the theory of non-computable problems was Turing’s proof
of the so-called “halting problem”. Turing proved that it was impossible to create a program that was able
to conclude whether the source program would halt after completing the calculations or whether it would
run forever. Later, a large number of non-computable problems were discovered, many of which were
reduced to the halting problem. It is impossible to create a program that will come to a conclusion about
stopping another program, but being people, programmers do this kind of work every day.

Another impetus for the development of ideas about how science works and how human thinking
works is Godel’s theory. This mathematician was able to solve several problems, from which it followed
that any theory containing arithmetic could not be simultaneously consistent and complete. That is, if a
theory is consistent, it is incomplete, and if it is complete, then it will inevitably contain contradictions.
When Godel proved his theorems, it became clear why the great mathematician Hilbert had failed to unite
all mathematical principles into a single science, and why the great physicist Einstein had failed to create
a unified theory of gravitational and electromagnetic fields. But the most important thing is that despite
the fundamental impossibility of creating a single theory about the outside world, people easily use the
existing independent pieces of scientific knowledge, somehow uniting them in their minds.

With the emergence of the theory of non-computable problems, a clear, mathematically rigorous
criterion appeared for the first time, allowing people to distinguish computer intelligence from human
intelligence. That is, with the development of the listed branches of mathematics, there is hope for the
creation of a mathematical theory of consciousness in the future. A computer that acts clearly on the basis
of a limited algorithm cannot solve a non-computable problem, and if it were possible to prove that
people can solve non-computable problems, then a mathematically specific difference between human



intelligence and artificial intelligence would appear and, accordingly, there would be a criterion for
choosing between Strong Artificial Intelligence hypothesis and Weak Artificial Intelligence hypothesis.

This article is an attempt to prove that people are capable of solving some non-computable
problems.

Trying to formalize the idea of human intelligence, it is impossible to do it without the use of
such concepts as information, creativity, and cognitive processes. We compile the three most well-known
approaches to the information theory [6—8] in chronological order. In 1928, Hartley proposed an approach
to information as a measure of changes in the diversity of a given set (combinatorial approach). In this
case, information contained in any text is equal to I = n log, m, where n is the number of letters in the
message and m is the number of letters in the alphabet. Accordingly, if a text is written in a binary code,
m=2and[=n.

In 1948, Shannon proposed a probabilistic approach to information. The amount of information in
a message consisting of non-equiprobable elements, by Shannon, equals

m
I=—n), Plog,P,
i=1 , where P; is corresponding probabilities.

Then m=2 and I = — n (P, log, Py + Plog, Py) for binary code.

However, Shannon himself and other scientists [8] emphasized that Shannon’s formula gives the
amount of information that could potentially be in a signal or text containing a fixed number of ones and
zeros. This formula does not respond to the question about the actual amount of meaningful information
in this signal. Some other approach is needed to determine the meaning contained in the signal.

In 1965, Kolmogorov proposed an algorithmic approach to the understanding of information. He
introduced the concept of “Relative complexity” of the object “y” for a given “x” as the minimum length
L(P) of the “program” “P” for obtaining “y” from “x”. Thus, the formulated definition depends on the
“programming method”. The programming method is the function @(p, x) =y, which puts in compliance
the object “y” to the program P and the object “x”. Therefore, the relative complexity by Kolmogorov is

min L (p), if p (p.x) =,
Kw(y/x) =

o if there is no p such that ¢ (p, x) = y.

If K o(y) = K ¢(y/1) is considered as simply a complexity of the object “y”, then the amount of

[}

information in “x” relative to “y” according to Kolmogorov can be determined by the formulas:
Ilylx)=K,ly|—K,(y/x],
I(p(y/y):K(p(y)’
K,(y/y)=0.

Four provisions important for the understanding of the article have proved that:

1. The Kolmogorov complexity is not computable, that is, there is no algorithm by which the
Kolmogorov complexity or the minimum length of any message can be determined. The absence of an
algorithm means that this complexity is infinite.

2. There is no lower bound for the Kolmogorov complexity.

In general, the Kolmogorov complexity is less than Shannon entropy (Shannon’s information
theory) [9].

3. With the algorithmic transformation of the studied objects, the amount of information in them
does not increase (more precisely, it does not increase by more than a constant depending on the
transformation algorithm). That is, if there is an object “y”, its Kolmogorov complexity is

K,(A(y)) <K,(y) + const .

Here A(y) is an object “y”, transformed by the algorithm A. Other scientists pointed out the fact
that algorithmic information array processing does not create new information. The same conclusion is
made in the book by L. Brillouin [8].



4. The Rice-Uspensky theorem states that “all nontrivial statements about programs are algorithmically
unsolvable”. In fact, this theorem includes the Turing Halting Theorem, as a special case.

The difference between the approaches of Hartley, Shannon and Kolmogorov is easy to illustrate
if you calculate the amount of information in any text by each of the methods. For simplicity, we will not
use optimal encoding methods, but will simply enumerate letters and punctuation marks, assigning them
consecutive numbers and converting the latter to binary. Each letter, sign or gap between words is written
in a six-digit binary code. Then it is obvious that according to Hartley the amount of information in a text
will simply be equal to the number of its letters, spaces and punctuation marks multiplied by six.
According to Shannon, the amount of information in a text will be smaller, since the probabilities of
meeting “0” or “1” in a text will most likely differ. According to Kolmogorov, the amount of information
in a text may be even smaller. However, it is difficult to predict what specific amount of information will
be determined, since there is no algorithm for calculating the Kolmogorov complexity. As a result, the
amount of received information will depend on the reader’s ability to cut off the noise and provide a
synthesis of received information.

Whether people can solve non-computable problems is an issue of fundamental importance,
though hardly provable.

A. Consider whether it is possible to create a program that will be able to distinguish
between non-computable and computable problems.

Let us prove Theorem No. I: “The task of selecting computable problems and non-computable
problems is a non-computable problem”. We can attempt to prove it by contradiction. Let’s suppose that
this problem is computable. Then there is an algorithm (Selector-1) that can recognize a computable
problem and a non-computable problem. But then there is another algorithm (Selector-2), which can be
used to analyze the first algorithm (Selector-1) to see if it presents a computable problem or a non-
computable problem. Therefore, the second algorithm (Selector-2) can describe the non-trivial properties
of the first algorithm (Selector-1). However, this contradicts the Rice-Uspensky theorem. Thus, the task
of selecting computable and non-computable problems is a non-computable problem.

B. Consider whether it is possible to create a program that will be able to invent non-computable
problems.

Theorem No. 2 is obviously derived from theorem No. 1: “The task of the invention of non-
computable problems is a non-computable problem”. This fact follows from the obvious thesis that the skill of
inventing non-computable problems must include the skill of “recognizing” non-computable problems. But
according to theorem No. 1, the latter skill is a non-computable problem.

C. Consider whether it is possible to create a program that will be able to create new
information while processing information arrays.

This issue is closely related to theorem No. 1 and theorem No. 2 and the answer to it can be
formulated as follows: Theorem No. 3: “The creation of some new information or a new algorithm while
processing information arrays is a non-computable problem”. This statement automatically follows from
provision No. 3 of the Kolmogorov complexity and can be easily proved by contradiction.

There is an equally important question of whether a reverse statement is true: Does the solution to
a non-computable problem inevitably lead to the creation of new information? To answer this question, it
is necessary to consider three possible options: 1. A solution to a non-computable problem can lead to the
creation of new information; 2. A solution to a non-computable problem can lead to a decrease in the
initial information; 3. A solution to a non-computable problem can lead to the creation of zero
information.

The answer to the first question is positive and is given by Theorem No 3. The answer to the second
question is negative, because prior to the solution to the problem, some source data has been known that
remains known even after the solution. Therefore, when solving a problem, the amount of initial information
does not decrease. The third question has a negative answer, too. Let’s suppose that there is a non-
computable problem that creates zero new information. However, this fact itself is new information,
therefore, the initial assumption leads to a contradiction. Thus, there is only one sensible option: solving a
non-computable problem always leads to the creation of new information. This allows us to formulate the
following theorem.

Theorem No 4. A non-computable problem is a problem whose solution leads to the creation of
new information.

On the basis of this theorem, the classical definition of a non-computable problem as
a problem unsolvable with the help of algorithms becomes absolutely understandable, since the problems
that are solved with the help of algorithms do not create new information. Another important fact follows
from Theorem No 4. As it is known, the definition of the Kolmogorov complexity of an object (text) is a



non-computable problem that can be solved by the definition of the shortest length of the description of
the object (text) under study. According to Theorem No 4, something new must be found. Obviously, this
new in this case will be knowledge about the real content of information in the object (text) under study.

D. Consider the problem of solving a problem in the absence of sufficient initial data.

People have to deal with such problems both in scientific research and in other areas of human
activity. To begin with, consider the simplest case of a single message function, based on the Shannon-
Kotelnikov theorem. As it is known, if there is a signal p(t) and p(t) = 0 at t < 0 and at t > T, and the
spectrum of p(t) does not contain frequencies above f,,, then the sampling theorem states that

Nm sin n(met—i)

plt ::izo Pi n(met—i) ’

while P, = P (t # ). Thus, the continuous signal limited in time and in the frequencies is
completely determined by the discrete series of N of its values (N =T x 2f, + 1 = N, + 1). Moreover,
these values of P; (samples) are taken at regular intervals, determined by the maximum
frequency of the signal spectrum (At = # )-

Thus, according to the Shannon-Kotelnikov theorem, the information contained in the N samples
completely determines all the parameters of the signal p(t) and allows it to be reproduced using the above
algorithm. Therefore, this is a common computable problem.

Suppose now that one of the P; samples, namely Py, is not known. Obviously, the simplest
approximation in this case will be the determination of P, W and in this case the
error in determining P(t) will be within a few tens of percent at this point, if N >> 1. Such accuracy may
be acceptable for a number of specific problems. However, if two, three or more samples are not known,
then the determination accuracy will decrease more and more for any approximation algorithm and at
some point it will be impossible to determine p(t) with the help of some algorithm. The problem will
become non-computable, since for its solution it will be necessary to find out new information — where
the lost samples are located. And the problem is not that there is no solution, but that there is an infinite
number of possible solutions.

Another task similar to the task with lost samples can be specified. This is a task with the simplest
linear (or branched) logical chain, where one element is associated with one previous element and one (or
several) subsequent ones. It is not difficult to develop an algorithm for assembling the whole chain if the
links of the element number “i” with the elements of “i ” are known and unambiguou: +1 owever, if
some elements are lost, then the problems described above arise.

In real science, such chains are rarely found, and more often, the individual facts or blocks of
knowledge are connected to other such blocks not linearly, but in several dimensions. The most obvious
and simple analogy is the famous children’s game “Lego”. Therefore, we can call this connection of
elements the Lego logic.

Obviously, the revelation of the laws governing the construction of such a structure will require
some efforts involving, in particular, the Godel theorem. However, one fact can be immediately indicated.
Let’s suppose that there are N elements and it is known that M elements of them can be combined
according to some rules into a single block. Obviously, if N is finite and the join rules are known, then a
finite algorithm for assembling M elements from existing N elements can be developed. That is, such a
problem is an ordinary computable problem.

Let us suppose now that M lacks any element. Apparently, the existing program can basically
restore the block of elements M. However, if, for example, a large number of elements are missing and,
for example, M splits into two or more sub-blocks, then the program will not be able to restore the
integrity of the M block. Let us now prove the following theorem:

The Lego Theorem (Theorem No 5). Let there be N lego elements (N >> 1). Let M
(M >> 1) of them be able to be combined into a single unit. Let X elements be deleted from M. The
problem of determining of the minimum X, for which the assembly of a single block M becomes a non-
computable problem, is a non-computable problem.

Let’s prove it by contradiction. Supposedly, there is a Lego algorithm that can determine X, but
then it turns out that the Lego algorithm is able to distinguish a computable problem from a non-



computable problem. However, it has previously been proved that this is impossible. Can people solve the
problems described above? They can. And, moreover, science largely develops precisely by restoring a
holistic picture by individual experimental facts (points, samples). Let us give some classic examples on
this topic.

Maxwell discovered the equations of the electromagnetic field, based on the experiments of
Faraday and some other experimenters. However, to determine the correct kind of equations, Maxwell
had to postulate the presence of a bias current and this allowed him to make a number of discoveries.
Thereby, Maxwell was able to predict the unified nature of electromagnetic and optical phenomena.

The history of the discovery of the Mendeleev periodic table of the chemical elements is no less
known. At the time of the discovery, some of the elements were unknown, and some of the elements had
inaccurate parameters. Nevertheless, the correct type of Mendeleev’s table of elements was determined.

The most striking example of solving a problem in the absence of sufficient data seems to be the
creation of the general theory of relativity by FEinstein. Since Newton’s time, it had

been known that the inertial mass (F, = ma) and the gravitational mass (F,m—zy ) were equal
r

and it did not surprise anyone. However, this experimental fact alone was enough for Einstein
to understand the equivalence of gravitational and inertial phenomena, and to create a general theory of
relativity.

The four examples of non-computable problems given above can be solved by people. People can
create new information, people can distinguish computable and non-computable problems, people can
invent non-computable problems, people can solve problems in the absence of sufficient source data. The
four skills shape human ability to solve non-computable problems. Therefore, it can be considered proven
that people can solve non-computable problems.

In mathematics, problems that don’t have a solution algorithm are called non-compu-table; in
humanities, the ability of a person to solve problems that do not fit the framework of logic is called
intuition.

Together with the emergence of the theory of non-computable functions in mathematics, i.e.,
functions that are not reducible to algorithms, there appeared an objective criterion which allowed us to
distinguish between computer intelligence and human intelligence. Computer intelligence is limited to
algorithms and is not capable of solving non-computable problems. A person is able to go beyond
algorithms and can solve non-computable problems whose algorithms are infinitely complex. The
approaches to the representation of the Hartley and Shannon information are fully algorithmic and this
makes them very convenient in technical applications. The definition of information according to
Kolmogorov cannot be reduced to algorithms and is significantly related to the peculiarities of human
thinking. That is why Kolmogorov’s approach to information is important when attempting to model a
creative thinking of a human being.

Kolmogorov argues that that the complexity of information contained in an object does not
change by more than a constant during algorithmic information processing. That is, computer-based
information processing does not lead to the emergence of new information that was not originally
contained in the original database. Then it turns out that new information can be obtained either through
the interaction of a reader with some media, or through information processing performed by a thinker
acting outside the algorithms and solving non-computable problems during information processing (the
task in the absence of sufficient data, the task of establishing the complexity of the object (text)).

In the article, we implicitly relied on Kolmogorov’s definition of information when dealing with
theorems. It can be accounted for by a number of considerations.

As has already been mentioned, Shannon and many other scientists emphasized that Shannon
information (mathematical information) does not allow one to calculate the amount of semantic
information (semantics) in a signal (text). That is, the value calculated using Shannon’s formulas is an
information parameter, but it does not describe the value of the real semantic content of information. In
[10] it is proposed to label Shannon information as the “capacity of information packaging”. The authors
of the article believe that information capacity is a better term to describe the aforementioned
phenomenon. Therefore, the Shannon formulas allow us to determine how much semantic information
can potentially be written in a given set of zeros and ones, but it is quite possible that nothing is written.
That is, according to the algorithms of Shannon, you can determine information capacity of a text or
signal, which can be filled with semantic information. But whether this capacity is used must be
determined with the help of some other approaches. And these approaches should enable one to determine
the presence of semantic information in the information volume, which presupposes the presence of such
a skill as “Understanding”. It is obvious that any text (object) includes not only meaningful information,



but also informational noise. You can distinguish the first from the second only by understanding the
meaning of the text.

“Understanding” the content of an object (text) obviously implies the possibility of presenting this
content in a brief form. And this brief record should be understood as meaningful information in the original
information object. Thus, an attempt to formalize the term “meaningful (semantic) information”
automatically leads to the requirement of “Understanding”, and understanding makes it possible to single
out a brief, semantic, informationally meaningful content of a text. The amount of brief semantic content of
a text, expressed in a binary code, can be defined as a quantitative parameter determining the content of
semantic information in a text. Thus, in order to determine the amount of semantic information in a text, it is
necessary to understand the content of this text and then put it in a short form, retaining the original
meaning. The length of this extremely brief presentation will correspond to the amount of semantic
information in the original text. Since there are no algorithms for “Understanding”, it is obvious that the
determination of the amount of semantic information in a text is a non-computable problem.

Comparison of the final way of calculation of the quantitative measurement of the value of
semantic information in a text to the calculation of Kolmogorov information shows their identity. The
calculation of Kolmogorov information is done according to the shortest possible presentation of a text
and this is a non-computable problem.

The calculation of semantic meaningful information is also done with the minimal amount of a
text and you need “Understanding” for this. Thus, when the equivalence of the concepts “non-computable
problem” and “Understanding” is recognized, it is clear that Kolmogorov’s approach to information is an
approach that provides the study of semantic information. If we try to consider “Understanding” in terms
of algorithms, then it is obvious that “Understanding” cannot be reduced to limited algorithms, since it is
“Understanding” that allows to distinguish non-computable problems from computable ones, allows to
invent new non-computable problems, allows to solve problems in the absence of sufficient data, allows
to establish the amount of semantic information when finding Kolmogorov text complexity. Thus, in
Kolmogorov’s terms, the Kolmogorov complexity of “Understanding” is infinite.

Treating Shannon information as the information capacity of a text (object), and Kolmogorov
information as semantic information contained in the same text, we clearly see why the top estimate for
Kolmogorov information is Shannon information.

The recording of scientific information becomes more and more compact over time and includes
an increasing amount of information. That is, science in its development closely follows the precepts of
the monk Occam, who proposed “not to multiply the essence without necessity (“Occam’s razor ).

It can be said that a scientific discovery in its formulated form is a brief record of information
describing a phenomenon. On the other hand, Kolmogorov complexity is determined by the length of the
shortest description of an object or a phenomenon. Comparing these two approximate definitions, we can
say that the discovery formula is the Kolmogorov record. But then the problems caused by the fact that
Kolmogorov complexity is non-computable should be extended to any formula. Thus, to accomplish a
scientific discovery, there needs to be a thinker who is able to summarize a huge amount of scattered
information, understand what data is missing and be able to formulate the shortest possible recording of
this information. This record will be a discovery formula and at the same time a Kolmogorov record, and
the thinker will prove his ability to solve non-computable problems.

In this case, it is obvious that in order to make scientific discoveries, to invent new algorithms in
programming, in business, politics, art, we need a thinker, a creator who is able to use not only
algorithmic, but also not algorithmic methods. Most often these methods are called intuition. How can
you create such a thinker? We formulate a fairly obvious idea, which we will call the theorem on the
creation of a thinker.

Theorem Ne 6. “A thinker capable of solving non-computable problems cannot be created without
using non-algorithmic methods. Therefore, the task of creating a thinker who is capable of solving non-
computable problems is in itself a non-computable problem”.

Let us prove it by contradiction. Supposedly, there are algorithms that allow you to create a
thinker who can solve non-computable problems. But then it turns out that in the end, these source
algorithms provide a solution to a non-computable problem. That is, assuming that such algorithms exist,
we came to a contradiction.

Consequently, there are no algorithms for creating such a thinker, which was to be demonstrated.
Consequently, it is impossible to create human-like artificial intelligence using direct programming
methods.

There are no finite algorithms for making creative thinkers; however, such thinkers regularly arise
in human environment. The authors of [5] express a number of suppositions why a child growing up in a



complex human environment can learn to think creatively. The conditions which enable it are formulated
as follows: a complex mind, a developed body, developed sense organs, instinctively motivated
behaviors, complex social environment, ability to acquire and process information, openness to external
information and sensory flows.

Only an experiment can show whether the listed conditions are sufficient for creating artificial
intelligence that is not inferior to human intelligence.

Only when artificial intelligence whose creativity is not inferior to human creativity is created
will it be possible to truly investigate the mechanisms of “Understanding” and say that we know how
human thinking works.

The authors express their sincere gratitude to N. G. Gatina and A. E. Denisov for their numerous
and helpful comments on the article.
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ARTIFICIAL INTELLIGENCE AND SOME ASPECTS
OF HUMAN THINKING WHEN SOLVING NON-COMPUTABLE PROBLEMS

The article compares the hypothesis of Strong Artificial Intelligence, which states that all aspects of human
intellect can be reproduced with the help of direct programming, and the hypothesis of Weak Artificial Intelligence,
which maintains that it is basically impossible to reproduce human creativity and the ability of a person to create and
discover new information using direct programming.



The article provides evidence to support the hypothesis of Weak Artificial Intelligence. The proofs are
formulated as theorems and are based on information theory, complexity theory, and the theory of non-computable
problems. The authors often resort to the notion of non-computable problems which cannot be solved on the basis of
a limited algorithm.

The authors underline the difference between Kolmogorov’s and Shannon’s approaches to information.
Shannon’s formulas enable one to determine potential information capacity of a signal or text, but fail to define their
real semantic content. Kolmogorov’s approach to information focuses on the estimation of information capacity and
the solution of non-computable problems.

Therefore, unlike Shannon’s approach, Kolmogorov’s approach to information is associated with human
thinking and enables one to employ mathematical principles to explain some peculiarities of human thinking,

The article shows that new information appears only under experimental conditions or when non-computable
problems are solved. Algorithmic processing of information does not create new information.

The authors conclude that artificial intelligence which is creative and capable of generating new
information cannot be created through direct programming and is a non-computable problem itself.

artificial intelligence;, programming, algorithm,; information; Kolmogorov’s approach; Shannon’s
approach
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