2011-№2(31) Статья 12
Наумкин А.В.
Оже-спектроскопия графита и графено-подобных структур. C.128- 136
УДК 543.422.8
Анализируются результаты исследований методами электронной спектроскопии взаимодействий графеновых структур. Рассмотрена возможность определения существования взаимодействия графеновых листов, приводящего к расщеплению p-зоны на основе изменения формы C KVV оже-спектров.
информационная глубина, межслойное взаимодействие, нанотрубки, плотность занятых состояний, C KVV оже-спектр, электронная спектроскопия.
Библиография:
1. Тонтегоде, А.Я. Интеркалирование атомами двумерной графитовой пленки на металлах [Текст] / А.Я. Тонтегоде, Е.В. Рутьков // Успехи физических наук. – 1993. – Т. 163. – № 11. – С. 57.
2. Ahuja, R. Electronic structure of graphite: Effect of hydrostatic pressure [Text] / R. Ahuja [et al] // Phys. Rev. B. – 1995. – Vol. 51. – P. 4813.
3. Aizawa, T. Bond softening in monolayer graphite formed on transition-metal carbide surfaces [Text] / T. Aizawa [et al] // Phys. Rev. B. – 1990. – Vol. 42. – P. 11469.
4. Banerjee, S. Enchanced conductivity in graphene layers and their edges [Text] / S. Banerjee [et al] // Appl. Phys. Lett. – 2006 – Vol. 88. – P. 06211.
5. Bianconi, A. Photoemission studies of graphite high-energy conduction-band and valence-band states using soft-x-ray synchrotron radiation excitation [Text] / A. Bianconi, S.B.M. Hagström, R.Z. Bachrach // Phys. Rev. B. – 1977. – Vol. 16. – P. 5543.
6. Bichoutskaia, E. Interwall interaction and elastic properties of carbon nanotubes [Text] / E. Bichoutskaia [et al] // Phys. Rev. B. – 2006. – Vol. 73. – P. 045435.
7. Bostwick, A. Experimental studies of the electronic structure of graphene [Text] / A. Bostwick [et al] // Progr. Surf. Sci. – 2009. – Vol. 84. – P. 380.
8. Bruhwiler, P. A. Synchrotron studies of carbon surfaces [Text] // J. Phys.: Condens. Matter. – 2001. – Vol. 13. – P. 11229.
9. Charlier, J.-C. First-principles study of the electronic properties of graphite [Text] / J.-C. Charlier, X. Gonze, J.-P. Michenaud // Phys. Rev. B. – 1991. – Vol. 43. – P. 4579.
10. Christ, K.V. Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes [Text] / K.V. Christ, H.R. Sadeghpour // Phys. Rev. B. – 2007. – Vol. 75. – P. 195418.
11. Chung, D.D.L. Graphite [Text] // J. Mater. Sci. – 2002. – Vol. 37. – P. 1475.
12. Dementjev, A. P. Relationship between the C KVV Auger line shape and layered structure of graphite [Text] / A.P. Dementjev, K.I. Maslakov, A.V. Naumkin // Appl. Surf. Sci. – 2005. – Vol. 245. – P. 128.
13. Endo, K. Analysis of Electron Spectra of Carbon Allotropes (Diamond, Graphite, Fullerene) by Density Functional Theory Calculations Using the Model Molecules [Text] / K. Endo [et al] // J. Phys. Chem. A. – 2003. – Vol. 107. – P. 9403.
14. Ferralis, N. Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001) [Text] / N. Ferralis, R. Maboudian, C. Carraro // Phys. Rev. Lett. – 2008. – Vol. 101. – P. 156801.
15. Feuerbacher, B. Splitting of the π Bands in Graphite [Text] / B. Feuerbacher, B. Fitton // Phys. Rev. Lett. – 1971. – Vol. 26. – P. 840.
16. Golden, M.S. The electronic structure of fullerenes and fullerenes compounds from high-energy spectroscopy [Text] / M.S. Golden [et al] // J. Phys.: Cond. Matter. – 1995. – Vol. 7. – P. 8219.
17. Grimme, S. Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes [Text] / S. Grimme, C. Muck-Lichtenfeld, J. Antony // J. Phys. Chem. C. – 2007. – Vol. 111. – P. 11199.
18. Grüneis, A. Tunable hybridization between electronic states of graphene and a metal surface [Text] / A. Grüneis, D. V. Vyalikh // Phys. Rev. B. – 2008. – Vol. 77. – P. 193401.
19. Houston, J.E. Relationship between the Auger line shape and the electronic properties of graphite [Text] / J.E. Houston [et al] // Phys. Rev. B. – 1986. – Vol. 34. – P. 1215.
20. Kis, A. Interlayer forces and ultralow sliding friction im multiwalled carbon nanjtubes [Text] / A. Kis [et al] // Phys. Rev. Lett. – 2006. – Vol. 97. – P. 025501.
21. Klusek, Z. Investigations of splitting of the π bands in graphite by scanning tunneling spectroscopy [Text] // Appl. Surf. Sci. – 1999. – Vol. 151. – P. 251.
22. Knox, K.R. Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate [Text] / K.R. Knox [et al] // Phys. Rev. B. – 2008. – Vol. 78. –P. 201408(R).
23. Kobayashi, K. Electronic structure of monolayer graphite on a TiC(111) surface [Text] / K. Kobayashi, M. Tsukada // Phys. Rev. B. – 1994. – Vol. 49. – P. 7660.
24. Krummacher, S. Close similarity of the electronic structure and electron correlation in gas-phase and solid C60 [Text] / S. Krummacher [et al] // Phys. Rev. B. – 1993. –Vol. 48. – P. 8424.
25. Kudo, H. Carbon KVV Auger electron emission from highly oriented pyrolytic graphite bombarded by fast protons [Text] / H. Kudo [et al] // Nucl. Instrum. Meth. Phys. Res. B. – 2002. – Vol. 190. – P. 160.
26. Lander, J.J. Auger Peaks in the Energy spectra of secondary electrons from various materials [Text] // Phys. Rev. B. – 1953. – Vol. 91. – P. 1382.
27. Lang, B. A LEED study of the deposition of carbon on platinum crystal surfaces [Text] // Surf. Sci. – 1975. – Vol. 53. – P. 317.
28. Larachi, F. X-ray Photoelectron Spectroscopy, Photoelectron Energy Loss Spectroscopy, X-ray Excited Auger Electron Spectroscopy, and Time-of-Flight-Secondary Ion Mass Spectroscopy Studies of Asphaltenes from Doba-Chad Heavy Crude Hydrovisbreaking [Text] / F. Larachi [et al] // Energy and Fuels. – 2004. – Vol. 18. – P. 1744.
29. Latil, S. Charge carriers in few-layer graphene films [Text] / S. Latil, L. Henrard // Phys. Rev. Lett. – 2006. – Vol. 97. – P. 036803.
30. Mallard, L.M. Raman spectroscopy in graphene [Text] / L.M. Mallard [et al] // Phys. Rep. – 2009. – Vol. 473. – P. 51.
31. Marinopoulos, A.G. Anisotropy and interplane interactions in the dielectric response of graphite [Text] / A. G. Marinopoulos [et al] // Phys. Rev. Lett. – 2002 – Vol. 89. –P. 076402.
32. Moliver, S.S. Auger-Spectroscopic Appearance of Electron Correlation at the Fermi Surface of Graphite [Text] // Phys. Sol. State. – 2004. – Vol. 46. – P. 1583.
33. Murday, J.S. Carbon KVV Auger line shapes of graphite and stage-one cesium and lithium intercalated graphite [Text] / J.S. Murday [et al] // Phys. Rev. В. – 1981. – Vol. 24. –P. 4764.
34. Nagashima, A. Electronic structure of monolayer graphite on some transition metal carbide surfaces [Text] / A. Nagashima [et al] // Surf. Sci. – 1993. – Vol. 287–288. –P. 609.
35. Novoselov, K.S. Electric Field Effect in Atomically Thin Carbon Films [Text] / K.S. Novoselov [et al] // Science. – 2004. – Vol. 306. – P. 666.
36. Ohta, T. Controlling the electronic structure of bilayer graphene [Text] / T. Ohta [et al] // Science. – 2006. – Vol. 313. – P. 951.
37. Ohta, T. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy [Text] / T. Ohta [et al] // Phys. Rev. Lett. – 2007. – Vol. 98. – P. 206802.
38. Painter, G.S. Electronic Band Structure and Optical Properties of Graphite from a Variational Approach [Text] / G.S. Painter, D.E. Ellis // Phys. Rev. B. – 1970. – Vol. 1. –P. 4747.
39. Palser, A. H. R. Interlayer interactions in graphite and carbon nanotubes [Text] // Phys. Chem. – 1999. – Vol. 1. – P. 4459.
40. Pandey, D. Scanning probe microscopy study of exfoliated oxidized graphene sheets [Text] / D. Pandey, R. Reifenberger, R. Piner // Surf. Sci. – 2008. – Vol. 602. – P. 1607.
41. Park, C.-H. Electron-Phonon Interactions in graphene, bilayer graphene, and graphite [Text] / C.-H. Park [et al] // Nano Lett. – 2008. – Vol. 8. – P. 4229.
42. Perfetto, E. Electronic correlations in graphite and carbon nanotubes from Auger spectroscopy [Text] / E. Perfetto [et al] // Phys. Rev. B. – 2007. – Vol. 76. – P. 233408.
43. Ruuska, H. Ab initio study of interlayer interaction of graphite: benzene-coronene and coronene-dimer two-layer model [Text] / H. Ruuska, T. A. Pakkanen // J. Phys. Chem. B. – 2001. – Vol. 105. – P. 9541.
44. Soldano, K. Production, properties and potential of graphene [Text] / K. Soldano, A. Mahmood, E. Dujardin // Carbon. – 2010. – Vol. 48. – P. 2127.
45. Song, W. Electronic structures of semiconducting double-walled carbon nanotubes: Important effect of interlayer interaction [Text] / W. Song [et al] // Chem. Phys. Lett. – 2005. – Vol. 414. – P. 429.
46. Suenaga, K. Electron-energy loss spectroscopy of electron states in isolated carbon nanostructures [Text] / K. Suenaga [et al] // Phys. Rev. B. – 2001. – Vol. 63. – P. 165408.
47. Sutter, P. Electronic Structure of Few-Layer Epitaxial Graphene on Ru (0001) [Text] / P. Sutter [et al] // Nano Lett. – 2009. – Vol. 9. – P. 2654.
48. Tanaka, K. Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes [Text] / K. Tanaka [et al] // Carbon. – 1997. – Vol. 35. – P. 121.
49. Tanuma, S. Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50–2000 eV range [Text] / S. Tanuma, C.J. Powell, D.R. Penn // Surf. Int. Anal. – 2005. – Vol. 37. – P. 1.
50. Tatar, R.C. Electronic properties of graphite: A unified theoretical study [Text] / R.C. Tatar, S. Rabii // Phys. Rev. B. – 1982. – Vol. 25. – P. 4126.
51. Ueta, H. Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam [Text] / H. Ueta [et al] // Surf. Sci. – 2004. – Vol. 560. – P. 183.
52. Walt, A. Epitaxial Graphene [Text] / A. Walt [et al] // Solid State Comm. – 2007. – Vol. 143. – P. 92.
53. Willis, R.F. Experimental Investigation of the Band Structure of Graphite [Text] / R.F. Willis, B. Feuerbacher, B. Fitton // Phys. Rev. B. – 1971. – Vol. 4. – P. 2441.
54. Xu, M. Auger Electron Spectroscopy: A Rational Method for Determining Thickness of Graphene Films [Text] / M. Xu [et al] // ACS Nano. – 2010. – Vol. 4. – P. 2937.
55. Zi-Pu, H. LEED theory for incommensurate overlayers: Application to graphite on Pt(111) [Text] / H. Zi-Pu [et al] // Surf. Sci. – 1987. – Vol. 180. – P. 433.