2010-№4(29) Article 15

A.M. Lavrov

A progression problem suggested at the correspondence round of the conquer «The vorobyevy gory competition». p.149-154

Скачать статью

UDC 51(07): 372.851

 

The paper dwells on two different approaches to solving a progression problem suggested at the correspondence round of the Conquer the Vorobyevy Gory competition. One of the approaches bases on an arithmetical progression, the other is based on a geometrical progression.

 

arithmetical progression, geometrical progression, square trinomial, Conquer the Vorobyevy Gory competition.

 

References

1. Alekseev V. Olimpiada “Pokori Vorob’evy gory!” [The contest “Conquer Sparrow Hills!”]. Matematika – Mathematics, 2010, no. 23, pp. 30-37.

2. Alekseev V. Olimpiada “Lomonosov – 2010 [The contest “Lomonosov – 2010]. Matematika – Mathematics, 2010, no. 24, pp. 34-40.

3. Egorov A.A., Tikhomirova V.A. Zadachi vstupitel’nykh ekzamenov [The tasks of entrance examinations]. Moscow, Byuro Kvantum Publ., 2008, 176 p. (Appendix to Kvant, 2008, no. 6).

4. Olimpiada “Lomonosov” po matematike (2005-2008) [The “Lomonosov” contest in mathematics (2005-2008)]. Moscow, Izdatel’stvo MGU – The Publishing House of MSU, 2008, 48 p.

5. Egorov A.A., Dorichenko S.A., tohkomirova V.A. Ekzamenatsionnye materially po matematike i fizike [Examination materials for mathematics and physics]. Moskow, Byuro Kvantum Publ., 2009, 208 p. (Appendix to Kvant, 2009, no.6.

Uncategorized