2011-№2(31) Article 12

A.V. Naumkin

Auger-spectroscopy of graphene and graphene-like structures. р.128-136

Скачать статью

UDC 543.422.8

 

The paper analyzes the interactions between graphene structures investigated by electron spectroscopy methods. The paper dwells on the possibility of observing the interaction between graphene sheets inducing p-band splitting on the basis of the C KVV Auger-line analysis.

 

sampling depth, interlayer interaction, nanotubes, density of occupied states, C KVV Auger spectrum, electron spectroscopy.

 

References

1. Tontegode, A.Ja. Interkalirovanie atomami dvumernoj grafitovoj plenki na metallah [Tekst] [The intercalation of atoms of two-dimensional graphite pellicle on metals] / A.Ja. Tontegode, E.V. Rut’kov // Successe of physical sciences. – 1993. – Vol. 163. – № 11. – 57p.

2. Ahuja, R. Electronic structure of graphite: Effect of hydrostatic pressure / R. Ahuja // Phys. Rev. B. – 1995. – Vol. 51. – P. 4813.

3. Aizawa, T. Bond softening in monolayer graphite formed on transition-metal carbide surfaces / T. Aizawa // Phys. Rev. B. – 1990. – Vol. 42. – P. 11469.

4. Banerjee, S. Enchanced conductivity in graphene layers and their edges / S. Banerjee // Appl. Phys. Lett. – 2006 – Vol. 88. – P. 06211.

5. Bianconi, A. Photoemission studies of graphite high-energy conduction-band and valence-band states using soft-x-ray synchrotron radiation excitation / A. Bianconi, S.B.M. Hagstrцm, R.Z. Bachrach // Phys. Rev. B. – 1977. – Vol. 16. – P. 5543.

6. Bichoutskaia, E. Interwall interaction and elastic properties of carbon nanotubes / E. Bichoutskaia // Phys. Rev. B. – 2006. – Vol. 73. – P. 045435.

7. Bostwick, A. Experimental studies of the electronic structure of graphene / A. Bostwick // Progr. Surf. Sci. – 2009. – Vol. 84. – P. 380.

8. Bruhwiler, P. A. Synchrotron studies of carbon surfaces // J. Phys.: Condens. Matter. – 2001. – Vol. 13. – P. 11229.

9. Charlier, J.-C. First-principles study of the electronic properties of graphite / J.-C. Charlier, X. Gonze, J.-P. Michenaud // Phys. Rev. B. – 1991. – Vol. 43. – P. 4579.

10. Christ, K.V. Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes / K.V. Christ, H.R. Sadeghpour // Phys. Rev. B. – 2007. – Vol. 75. – P. 195418.

11. Chung, D.D.L. Graphite // J. Mater. Sci. – 2002. – Vol. 37. – P. 1475.

12. Dementjev, A. P. Relationship between the C KVV Auger line shape and layered structure of graphite / A.P. Dementjev, K.I. Maslakov, A.V. Naumkin // Appl. Surf. Sci. – 2005. – Vol. 245. – P. 128.

13. Endo, K. Analysis of Electron Spectra of Carbon Allotropes (Diamond, Graphite, Fullerene) by Density Functional Theory Calculations Using the Model Molecules / K. Endo // J. Phys. Chem. A. – 2003. – Vol. 107. – P. 9403.

14. Ferralis, N. Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001) / N. Ferralis, R. Maboudian, C. Carraro // Phys. Rev. Lett. – 2008. –Vol. 101. – P. 156801.

15. Feuerbacher, B. Splitting of the π Bands in Graphite / B. Feuerbacher, B. Fitton // Phys. Rev. Lett. – 1971. – Vol. 26. – P. 840.

16. Golden, M.S. The electronic structure of fullerenes and fullerenes compounds from high-energy spectroscopy / M.S. Golden // J. Phys.: Cond. Matter. – 1995. – Vol. 7. – P. 8219.

17. Grimme, S. Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes / S. Grimme, C. Muck-Lichtenfeld, J. Antony // J. Phys. Chem. C. – 2007. – Vol. 111. – P. 11199.

18. Grьneis, A. Tunable hybridization between electronic states of graphene and a metal surface / A. Grьneis, D. V. Vyalikh // Phys. Rev. B. – 2008. – Vol. 77. –P. 193401.

19. Houston, J.E. Relationship between the Auger line shape and the electronic properties of graphite / J.E. Houston // Phys. Rev. B. – 1986. – Vol. 34. – P. 1215.

20. Kis, A. Interlayer forces and ultralow sliding friction im multiwalled carbon nanjtubes / A. Kis // Phys. Rev. Lett. – 2006. – Vol. 97. – P. 025501.

21. Klusek, Z. Investigations of splitting of the π bands in graphite by scanning tunneling spectroscopy // Appl. Surf. Sci. – 1999. – Vol. 151. – P. 251.

22. Knox, K.R. Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate / K.R. Knox // Phys. Rev. B. – 2008. – Vol. 78. –P. 201408(R).

23. Kobayashi, K. Electronic structure of monolayer graphite on a TiC(111) surface / K. Kobayashi, M. Tsukada // Phys. Rev. B. – 1994. – Vol. 49. – P. 7660.

24. Krummacher, S. Close similarity of the electronic structure and electron correlation in gas-phase and solid C60 / S. Krummacher // Phys. Rev. B. – 1993. –Vol. 48. – P. 8424.

25. Kudo, H. Carbon KVV Auger electron emission from highly oriented pyrolytic graphite bombarded by fast protons / H. Kudo // Nucl. Instrum. Meth. Phys. Res. B. – 2002. – Vol. 190. – P. 160.

26. Lander, J.J. Auger Peaks in the Energy spectra of secondary electrons from various materials // Phys. Rev. B. – 1953. – Vol. 91. – P. 1382.

27. Lang, B. A LEED study of the deposition of carbon on platinum crystal surfaces // Surf. Sci. – 1975. – Vol. 53. – P. 317.

28. Larachi, F. X-ray Photoelectron Spectroscopy, Photoelectron Energy Loss Spectroscopy, X-ray Excited Auger Electron Spectroscopy, and Time-of-Flight-Secondary Ion Mass Spectroscopy Studies of Asphaltenes from Doba-Chad Heavy Crude Hydrovisbreaking / F. Larachi // Energy and Fuels. – 2004. – Vol. 18. – P. 1744.

29. Latil, S. Charge carriers in few-layer graphene films / S. Latil, L. Henrard // Phys. Rev. Lett. – 2006. – Vol. 97. – P. 036803.

30. Mallard, L.M. Raman spectroscopy in graphene / L.M. Mallard // Phys. Rep. – 2009. – Vol. 473. – P.

31. Marinopoulos, A.G. Anisotropy and interplane interactions in the dielectric response of graphite. Phys. Rev.Lett.,2002, vol. 89, no. 076402.

32. Moliver, S.S. Auger-Spectroscopic Appearance of Electron Correlation at the Fermi Surface of Graphite. Phys. Sol. State, 2004, vol. 46, no. 1583.

33. Murday, J.S. Carbon KVV Auger line shapes of graphite and stage-one cesium and lithium intercalated graphite. Phys. Rev.В.1981,vol.24, no. 4764.

34. Nagashima, A. Electronic structure of monolayer graphite on some transition metal carbide surfaces. Surf. Sci.1993, vol. 287–288, no.609.

35. Novoselov, K.S. Electric Field Effect in Atomically Thin Carbon Films.
Science, 2004, vol. 306. no. 666.

36. Ohta, T. Controlling the electronic structure of bilayer grapheme. Science, 2006, vol. 313, no. 951.

37. Ohta, T. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett, 2007. – vol. 98. no. 206802.

38. Painter, G.S. Electronic Band Structure and Optical Properties of Graphite from
a Variational Approach. Phys. Rev. B.,1970, vol.1, no. 4747.

39. Palser, A. H. R. Interlayer interactions in graphite and carbon nanotubes. Phys. Chem., 1999, vol. 1, no.4459.

40. Pandey, D. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf. Sci., 2008. vol. 602, no. 1607.

41. Park, C.-H. Electron-Phonon Interactions in graphene, bilayer graphene, and graphite. Nano Lett., 2008, vol. 8, no. 4229.

42. Perfetto, E. Electronic correlations in graphite and carbon nanotubes from Auger spectroscopy. Phys. Rev. B., 2007, vol. 76, no. 233408.

43. Ruuska, H. Ab initio study of interlayer interaction of graphite: benzene-coronene and coronene-dimer two-layer model. J. Phys. Chem. B., 2001, vol. 105, no. 9541.

44. Soldano, K. Production, properties and potential of graphene. Carbon, 2010, vol. 48, no. 2127.

45. Song, W. Electronic structures of semiconducting double-walled carbon nanotubes: Important effect of interlayer interaction. Chem. Phys. Lett., 2005, vol. 414, no. 429.

46. Suenaga, K. Electron-energy loss spectroscopy of electron states in isolated carbon nanostructures. Phys. Rev. B., 2001, vol. 63. no. 165408.

47. Sutter, P. Electronic Structure of Few-Layer Epitaxial Graphene on Ru (0001). Nano Lett., 2009, vol. 9, no. 2654.

48. Tanaka, K. Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon, 1997, vol. 35, no. 121.

49. Tanuma, S. Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50–2000 eV range. Surf. Int. Anal., 2005, vol. 37, no. 1.

50. Tatar, R.C. Electronic properties of graphite: A unified theoretical study. Phys. Rev. B., 1982, vol. 25, no. 4126.

51. Ueta, H. Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam. Surf. Sci., 2004, vol. 560, no 183.

52. Walt, A. Epitaxial Graphene. Solid State Comm., 2007, vol. 143, no. 92.

53. Willis, R.F. Experimental Investigation of the Band Structure of Graphite. Phys. Rev. B., 1971, vol. 4, no. 2441.

54. Xu, M. Auger Electron Spectroscopy: A Rational Method for Determining Thickness of Graphene Films. ACS Nano, 2010, vol. 4, no. 2937.

55. Zi-Pu, H. LEED theory for incommensurate overlayers: Application to graphite on Pt(111). Surf. Sci., 1987, vol. 180, no. 433.

Uncategorized