2012-№3(36) Article 14
A.M. Lavrov
The solution of a geometry problem from the correspondence round of the contest «Conquer the Vorobyovy gory – 2010». p. 150–156
UDC 51(07): 372.851
The article suggests two different solutions of a geometry problem (problem no. 5) for the correspondence round of the contest «Conquer the Vorobyovy Gory». One of the solutions is algebraic, the other, a shorter and a more elegant one, is geometric.
geometry, right triangle, altitude, contest «Conquer the Vorobyovy Gory»
References
1.Alekseev, V. A. Olimpiada «Lomonosov – 2010» [Olympics “Lomonosov – 2010”]/ V. Alexeev [etc.]// Math. – 2010. – № 24. – pp. 34–40.
2. Alekseev, V. A. Olimpiada «Pokori Vorob’evy gory» [Olympics “Conquer the Sparrow Hills”]/ V. Alexeev [etc.]// Math. – 2010. – № 23. – pp. 30–37.
3. Begunts, A. V. Olimpiada «Lomonosov» po matematike (2005–2008) [Olympics “Lomonosov” in mathematics (2005–2008)]/ A. Begunts, P. A. Borodin, I. N. Sergeyev; edited by I. N. Sergeyev. – Moscow: Publishing House of the CPS in mechanical–mathematical faculty. Moscow State University, 2008. – 48 p.
4. Vavilov, V. Ob odnoj olimpiadnoj zadache [About an Olympic problem]// Potential. – 2012. – № 3. – pp. 57–61.
5. Egorov, A. Zadachi vstupitel’nyh jekzamenov [Tasks entrance exams]/ compiler A. A. Egorov, V. A. Tikhomirov. – M.: Quantum Bureau, 2008. – 176 p. – (Appendix to the magazine “Quantum”. 2008. № 6).
6. Egorov, A. Jekzamenacionnye materialy po matematike i fizike [Examination papers in mathematics and physics]/ compiler A. A. Egorov, S. A. Dorichenko, V. A. Tikhomirov. – M.: Quantum Bureau, 2009. – 208 p. (Supplement to the “Quantum”. 2009. № 6).