Utkina A. O.

The Influence of Glacial Isostatic Adjustment on the River Flow of the Upper Volga during the Last Glacial Period P. 116- 129.

UDC 551.334.2:627.15(282.247.41)«625»

DOI 10.37724/RSU.2020.68.3.013


The likelihood of the formation of large proglacial lakes in the Upper Volga basin during the Last Glacial Period is a palaeographic issue that needs to be further investigated. Proglacial lakes are believed to have formed by the damming action of the moraine (which modern scientists consider rather doubtful) or due to postglacial rebound. The research reconstructs topographic changes of the Upper Volga basin on the basis of glacial isostatic adjustment models (ICE-5G and ICE-6G L. Peltier). The analysis of reconstructed river profiles shows that the adjustment was not sufficient to block the flow and to form large barrier lakes. Local lakes can be found in the source of the Volga River and in the Upper Volga downstream known for the glacier compensation effect resulting in the reduction of longitudinal slope. The reduction of longitudinal slope caused an intensive directed accumulation, deglaciation cutting and pre-glacial upland immersion. The used strategy can be employed to assess the influence of glacial isostatic adjustment on glacial areas. It can also be used by researchers who employ glacial isostatic adjustment models.

Valdai glaciation; Upper Volga; glacial isostatic adjustment; glacial isostatic compensation; pre-glacial upland; proglacial lakes



  1. Bylinskij E. N. Glacial Isostatic Rebound of the Lithosphere and their Potential Impact on the Location of Oil and Gas Fields in Northern Europe. Geomorfologija [Geomorphology]. 1990, no. 4, pp. 3–13. (In Russian).
  2. Bylinskij E. N. Vlijanie gljacioizostazii na razvitie rel’efa Zemli v plejstocene [The Influence of Glacial Isostatic Adjustment on Pleistocene Evolution of Relief]. Moscow, National Geophysical Committee of the Russian Academy of Sciences Publ., 1996, 210 p. (In Russian).
  3. Grosval’d M. G. Evrazijskie gidrosfernye katastrofy i oledenenie Arktiki [Eurasian Hydrosphere Catastrophes and Glaciation of the Arctic]. Moscow, Scientific World Publ., 1999, 120 p. (In Russian).
  4. Grosval’d M. G., Kotljakov V. M. The Great Proglacial Lake System of Northern Eurasia and its Role in the Interregional Correlations. Chetvertichnyj period. Paleogeografija i litologija [The Quaternary Period. Palaeography and Lithology]. Kishinev, Shtiintsa Publ., 1989, pp. 5–13. (In Russian).
  5. Kvasov D. D. Pozdnechetvertichnaja istorija krupnyh ozer i vnutrennih morej Vostochnoj Evropy [The Late Quaternary History of Large Lakes and Inner Seas of Eastern Europe]. St. Petersburg, Science Publ., 1975, 278 p. (In Russian).
  6. Argus D. F., Peltier W. R., Drummond R., Moore A. W. The Antarctica Component of Postglacial Rebound Model ICE-6G_C (VM5a) Based upon GPS Positioning, Exposure Age Dating of Ice Thicknesses, and Relative Sea Level Histories. Geophys. J. Int. 2014, no. 198 (1), pp. 537–563. doi:10.1093/gji/ggu140
  7. Astakhov V., Shkatova V., Zastrozhnov A., Chuyko M. Glaciomorphological Map of the Russian Federation. Quaternary International. 2016, vol. 420, pp. 4–14. doi: 10.1016/j.quaint.2015.09.024
  8. Busschers F. S., Kasse C., Balen R. T. van, Vandenberghe J., Cohen K. M., Weerts H. J. T., Wallinga J., Johns C., Cleveringa P., Bunnik F. P. M. Late Pleistocene Evolution of the Rhine-Meuse System in the Southern North Sea Basin: Imprints of Climate Change, Sea-Level Oscillation and Glacio-Isostacy. Quaternary Science Reviews. 2007, no. 26, pp. 3216–3248. doi: 10.1016/j.quascirev.07.013
  9. Cohen K., Gibbard P., Weerts H. North Sea Palaeogeographical Reconstructions for the Last 1 Ma. Netherlands Journal of Geosciences — Geologie En Mijnbouw. 2014, no. 93 (1–2), pp. 7–29. doi:10.1017/njg.2014.12
  10. Eakins B., Sharman G. Hypsographic Curve of Earth’s Surface from ETOPO1. Boulder, CO : NOAA National Geophysical Data Center. 2012. Available at : https://www.ngdc.noaa.gov/mgg/global/etopo1_surface_histogram.html. (Mode of access: 27.10.2019).
  11. Farrell W., Clark J. On Postglacial Sea-level. Geophys. J. R. Astron. Soc. 1976, no. 46 (3), pp. 647–667. doi:10.1111/j.1365-246X.1976.tb01252.x
  12. Hughes A. L. C., Gyllencreutz R., Lohne Ø. S, Mangerud J., Svendsen J. I. The Last Eurasian Ice Sheets — a Chronological Database and Time-slice Reconstruction, DATED-1. Boreas. 2016, no. 45, pp. 1–45. doi: 10.1111/bor.12142
  13. Lambeck K., Chappell J. Sea Level Change through the Last Glacial Cycle. Science. New York, 2001, vol. 292, pp. 679–686. doi: 10.1126/science.1059549
  14. Panin A., Adamiec G., Filippov V. Fluvial Response to Proglacial Effects and Climate in the Upper Dnieper Valley (Western Russia) during the Late Weichselian and the Holocene. Quaternaire. 2015, 26 (1), pp. 27–48. doi:10.4000/quaternaire.7141
  15. Panin A., Astakhov V., Komatsu G., Lotsari E., Lang J., Winsemann J. Middle and Late Quaternary Glacial Lake-outburst Floods, Drainage Diversions and Reorganization of Fluvial Systems in Northwestern Eurasia. Earth-Science Reviews. 2020, vol. 201. doi: 10.1016/j.earscirev.2019.103069
  16. Peltier W. R., Argus D. F., Drummond R. Space Geodesy Constrains Ice-age Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model. J. Geophys. Res. Solid Earth. 2015, no. 120, pp. 450–487. doi:10.1002/2014JB011176
  17. Peltier W. R. FRSC. Datasets: ICE-6G_C, ICE-5G. Available at : http://www.atmosp. physics.utoronto.ca/~peltier/data.php (accessed: 31.01.2020).
  18. Peltier W. R. Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE. Ann. Rev. Earth and Planet. Sci. 2004, no. 32, pp. 111–149. doi: 10.1146/annurev.earth.32.082503.144359
  19. Peltier W. R. The Impulse Response of a Maxwell Earth. Rev. Geophys. 1974, no. 12 (4), pp. 649–669. doi: 10.1029/RG012i004p00649
  20. Wallinga J., Törnqvist T. E., Busschers F. S., Weertsz H. J. T. Allogenic Forcing of the Late Quaternary Rhine-Meuse Fluvial Record: the Interplay of Sea-level Change, Climate Change and Crustal Movements. Basin Research. 2004, no. 16 (4), pp. 535–547. doi: 10.1111/j.1502-3885.2008.00025.x