2012-№2(35) Article 15
G.V. Kiotina
Complexes of lines in biflag space . p. 171–187
UDC 513.812
Complexes of lines in hyperbolic type of one of biflag spaces introduced by the author are studied by the method of external Cartan forms. We prove that six non–special variants of complexes and fore variants of special complexes exist in mentioned space in zero order neighborhood. For every complex a first–order moving flag or a second–order moving flag were drawn.
absolute, automorphism, group, frame: moving, canonical; measurement invariant differentiation external, neighborhood, space biflag.
References
1. Kiotina, G.V. Gruppa dvizhenii obobshchenno–galileeva prostranstva [The group of motions of generalized Galilean space]. Vestnik Riazanskogo gosudarstvennogo pedagogicheskogo universiteta – Bulletin of the Ryazan State Pedagogical University, Ryazan, 2004, pp. 117–126.
2. Kiotina, G.V. Kompleksy priamykh v biflagovom prostranstve [Complexes of lines in Biflagov space]. Trudy vtorykh Kolmogorovskikh chtenii – Proc. of the 2d Reading by Kolmogorov,Yaroslavl, 2004, pp. 338–344.
3. Kiotina, G.V. Klassifikatciia kompleksov priamykh v repere nulevogo poriadka v prostranstve [Classification of lines’ complexes in the frame of the zero–order in space]. Izvestiia Saratovskogo universiteta. Novaia seriia – Proc. of the Saratov University. New series, 2011, vol. 11, ed. 3, part 2, pp. 11–15.
4. Kovantcov, N.I. Teoriia kompleksov [The theory of complexes]. Kiev: Publishing House of the KSU, 1963, 292 p.
5. Rozenfeld, B.A. Giperkompleksy priamykh v evklidovykh i neevklidovykh prostranstvakh [Hypercomplexes of lines in Euclidean and non–Euclidean spaces]. B.A. Rozenfeld, O.V. Zatcepina, P.G. Stegantceva. Izvestiia vuzov. Matematika – Proceedings of Institutes of Higher Education, Kazan, 1990, no. 3, pp. 57–66.