Tobratov S. A., Zheleznova O. S., Vodorezov A. V.

Natural Cyclicity of Explosive Volcanism P. 138 – 169.

UDC 551.213.3

DOI 10.37724/RSU.2022.74.1.013

Abstract. The article treats the causes, factors and patterns of volcanic activity (eruptions rated at least 5 on the Volcanic Explosivity Index, excluding alkaline volcanoes). The article underlines that volcanic eruptions occurring every 1,650 years or 60–70 years (the Petterson-Shnitnikov pattern) are triggered off by the influence of the celestial bodies of the Solar system (Moon, Sun, Venus, Jupiter). It is highlighted that most powerful eruptions occur when volcanic cycle is over and another is about to begin. This information may have prognostic significance. The connection between volcanic eruptions and climate variability is investigated on the basis of N. S. Sidorenkov’s theoretical research, which underlines the leading role of the law of conservation of angular momentum. The slowdown in the Earth’s axial rotation is an indicator synchronized with major eruptive events. The authors emphasize that the connection between volcanic eruptions and climate variability cannot be explained in the simple cause and effect terms, but are of genetic character. The authors underline that most powerful volcanic eruptions coincide with cold and humid climatic conditions, while arid conditions are associated with minimal eruptive activity. The transgression of the Caspian Sea can serve as a hydro-climatic indicator of increasing hazardous effects of powerful volcanic eruptions. The article investigates the peculiarities of the Odintsovo interglacial period and the mid-Viking Age (900–950 AD), which, contrary to general laws, were characterized by excessive volcanism. The article investigates peat relicts to analyze the connection between volcanic eruptions and climate variability in the Atlantic period (Holocene eruptive maximum), as well as to analyze the interconnection between global volcanism and paleolandscapes on the Russian Plain. The article underlines that there are two humid subphases of the Holocene climatic optimum: 6.5-6.3 and 6.2-6.0 thousand years ago. Relying on the discovered patterns, the authors assume that volcanic activity will gradually weaken during the next 600 years. However, it can be predicted that volcanic activity will increase during cold phases (70 years) accompanied by a sharp decrease in the mass of polar glaciers (the nearest phase of activation is 2035–2045).

Keywords: bradyseisms, volcanism, the Petterson — Shnitnikov pattern, cyclicity of natural processes, the Caspian Sea level, 70-year cycle, VEI.


  1. Aleksandrovskij A. L., Aleksandrovskaja E. I. Jevoljucija pochv i geograficheskaja sreda [Evolution of Soils and Geographic Environment]. Moscow, Publ., 2005, 223 p. (In Russian).

  2. Budyko M. I. Klimat v proshlom i budushhem [The Climate of the Past and the Future]. Leningrad, GIMIZ Publ., 1980, 351 p. (In Russian).

  3. Vulkan Pjektusan. Vsja pravda o megaizverzhenii : dokumentalny filʼm [The Truth about Mega-explosions: a documentary]. Available at : (accessed 02.06.2021). (In Russian).

  4. Gorshkov G. S. Vulkanizm Kurilʼskoj ostrovnoj dugi [Volcanoes of the Kuril Islands]. Moscow, Publ., 1967, 182 p. (In Russian).

  5. Gumilev L. N. Jetnogenez i biosfera Zemli [Ethnogenesis and the Biosphere]. Moscow, DI-DIK Institute Publ., 1997, 640 p. (In Russian).

  6. Kasatkina E. V., Kulakov I. Ju., Vasilevskij A. N. The Toba Supervolcano and the Seismic Sources. Interjekspo GEO-Sibirʼ-2016. XII Mezhdunarodnaja naucnaja konferencija [Interekspo GEO-Siberia-2016: Proceedings of an International Research Conference]. Novosibirsk, Siberian State University of Geosystems and Technologies Publ., 2016, vol. 2, pp. 197–201. (In Russian).

  7. Kljashtorin L. B., Ljubushin A. A. Ciklicheskie izmenenija klimata i ryboproduktivnosti
    [Cyclic Climatic Changes and Fish Breeding]. Moscow, Russian Federal Research Institute of Fisheries and Oceanography Publ., 2005, 235 p. (In Russian).

  8. Koronovskij N. V. Obshhaja geologija [General Geology]. Moscow, KDU Publ., 2006,
    528 p. (In Russian).

  9. Kotljakov V. M. Climate History According to Deep See Drilling in the Antarctic. Priroda [Nature]. 2012, no. 5 (1161), pp. 3–9. (In Russian).

  10. Kulakov I. Ju. The Seismic Heartbeat of a Volcano. An Expedition to Gorely. Nauka
    iz pervyh ruk
    [Science Firsthand]. 2014, no. 1 (55), pp. 84–96. (In Russian).

  11. Kulikova V. V., Kulikov V. S., Bychkova Ja. V., Bychkov A. Ju. Istorija Zemli v galakticheskih i solnechnyh ciklah [History of Earth in Galactic and Solar Cycles]. Petrozavodsk, Karelia Research Centre of the Russian Academy of Sciences Publ., 2005, 250 p. (In Russian).

  12. Litasova S. N. Radiocarbon Dating of Large Volcanoes of the Kamchatka Peninsula in Holocene. Bjulletenʼ komissii po izucheniju chetvertichnogo perioda [Bulletin of the Committee Investigating Quaternary Period]. 1990, no. 59, pp. 164–169. (In Russian).

  13. Maev E. G. Mangyshlakian Regression of the Caspian Sea. Vestnik Moskovskogo gosdarstvennogo universiteta. Serija 5 : Geografija [Bulletin of Moscow State University. Ser. 5: Geography]. 2009,
    no. 1, pp. 15–20.

  14. Miheeva I. V. The Anthropogenic Influence on the Spatial Variability of Soils. Pochvovedenie [Pedology]. 1997, no. 1, pp. 102–109.

  15. Morgun V. A. “Golden” Civilization Waves and Paleoclimatic Oscillations of Patterson-Ashgar (part 2). Filosofija i kosmologija [Philosophy and Cosmology]. 2014, vol. 12, pp. 7–71. (In Russian).

  16. Muravʼev Ja. D. Volcanic Eruptions and Climate. Vestnik Dalʼnevostochnogo otdelenija rossijskoj akademii nauk [Bulletin of Fareast Department of the Russian Academy of Sciences]. 2007, no. 2, pp. 71–82. (In Russian).

  17. Ohlopkov V. P. Gravitational Influence of Venus, Earth and Jupiter on the 11-year Cycle of Solar Activities. Vestnik Moskovskogo gosudarstvennogo universiteta. Serija 3 : Fizika i Astronomija [Bulletin of Mosсow State University. Ser. 3: Physics and Astronomy]. 2016, no. 4, pp. 92–98. (In Russian).

  18. Pevzner M. M., Ponomareva V. V., Sulerzhickij L. D. Holocene Pyroclastic Soil Covering in the Central Kamchatka Depression: Age, Composition, Sediment Deposits. Vulkanologija i sejsmologija [Volcano Studies and Seismology]. 2006, no. 1, pp. 24–38. (In Russian).

  19. Ponomareva V. V., Melekescev I. V., Bazanova L. I. [et al]. Catastrophic Volcanic Eruptions in the Kamchatka Peninsula in Mid-Pleistocene and Holocene. Jekstremalʼnye prirodnye javlenija i katastrofy : v 2 tomah [Extreme Natural Phenomena and Catastrophes: in 2 vols.]. Gliko A. O. (ed.). Moscow, Institute of Physics of the Earth of the Russian Academy of Sciences Publ., 2010, vol. 1, pp. 219–238. (In Russian).

  20. Krivcov V. A. and Vodorezov A. V. (eds.). Priroda Rjazanskoj oblasti [Nature of the Ryazan Region]. Ryazan, Ryazan State University named for S. Yesenin Publ., 2019, 268 p. (In Russian).

  21. Rychagov G. I. The Level of the Caspian Sea in the Last 10,000 Years. Vestnik Moskovskogo gosudarstvennogo universiteta. Serija 5 : Geografija [Bulletin of Moscow State University. Ser. 5. Geography]. 1993, no. 2, pp. 38–49. (In Russian).

  22. Savelʼeva O. L., Savelʼev D. P. The Origin of Iridium Anomalies and Platinum Group Anomalies at Different Stratigraphy Levels. Vestnik Kamchatskoj regionalʼnoj associacii Uchebno-nauchnyj centr. Serija “Nauki o Zemle” [Bulletin of Kamchatka Regional Association Research Centre. Science series]. 2016, no. 4, iss. 32, pp. 73–87. (In Russian).

  23. Svitoch A. A. Hierarchy and Chronology of Holocene Fluctuations of the Caspian Sea Level. Izmenenie prirodno-territorialʼnyh kompleksov v zonah antropogennogo vozdejstvija [Anthropogenic Footprint and its Influence on Natural Complexes]. Moscow, Mediapress Publ., 2006, pp. 125–132. (In Russian).

  24. Svitoch A. A. Regressive Eras of the Caspian Sea. Vodnye resursy [Water Resources]. 2016, vol. 43, no. 2, pp. 134–148. (In Russian).

  25. Sidorenkov N. S. Uneven Rotation of the Earth and Pole Movement. Priroda [Nature]. 1982, no. 4, pp. 82–91. (In Russian).

  26. Sidorenkov N. S. Fizika nestabilʼnostej vrashhenija Zemli [Physics of Earth Orbit Instability]. Moscow, Science Publ., Fizmatlit Publ., 2002, 384 p. (In Russian).

  27. Sidorenkov N. S. The Nature of Earth Orbit Instability]. Priroda [Nature]. 2004, no. 8, pp. 8–18. (In Russian).

  28. Sidorenkov N. S. Synchronization of Atmospheric Processes and the Frequencies of the Earth — Moon — Sun System. Trudy Gidrometeorologicheskogo nauchno-issledovatelʼskogo centra Rossijskoj Federacii [Proceedings of Hydrometeorological Research Centre of the Russian Federation]. 2016, no. 359, pp. 33–47. (In Russian).

  29. Skripko K. A., Filaretova A. N. The Volcano of Shiveluch: Commemorating an Anniversary of the Catastrophic Eruption which Took Place on November 12, 1964. Zhiznʼ Zemli [Life of the Earth]. 2019, vol. 41, no. 3, pp. 315–319. (In Russian).

  30. Tobratov S. A., Zheleznova O. S., Krivcov V. A. Ecological and Geochemical Conditions of Peat Development in the Centre of the Russian Plane during Arid Periods of the Holocene. Materialy V Vserossijskoj nauchnoj konferencii [Proceedings of the 5th All-Russian Research Conference]. Media-PRESS Publ., 2019, pp. 319–322. (In Russian).

  31. Shnitnikov A. V. Izmenchivostʼ obshhej uvlazhnennosti materikov Severnogo polusharija. [Humidity Fluctuations on the Continents of the Northern Hemisphere]. Moscow, Academy of Sciences of the Soviet Union Publ., 1957, 337 p. (In Russian).

  32. Shnitnikov Arseny Vladimirovich. Russkie puteshestvenniki i moreplavateli : jenciklopedija [Russian Travellers and Sea voyagers; an encyclopaedia]. Available at : (accessed 03.07.2021). (In Russian).

  33. Jerlih Je. N. Sovremennaja struktura i chetvertichnyj vulkanizm zapadnoj chasti tihookeanskogo kolʼca [Modern Structure and the Quaternary Volcanism in the Western Part of the Pacific Ocean]. Novosibirsk, Science Publ., 1979, 210 p. (In Russian).

  34. Crosweller H. S., Arora B., Brown S. K. [et al.]. Global database on large magnitude explosive volcanic eruptions (LaMEVE). Journal of Applied Volcanology. 2012, 1:4. 13 p. DOI: 10.1186/2191-5040-1-4.

  35. Deschamps F., Li Y., Tackley P. Large-Scale Thermo-chemical Structure of the Deep Mantle: Observations and Models. The Earthʼs Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, 2015, pр. 479–515.

  36. Garnero E. J., McNamara A. K., Tyburczy J. A. Earthʼs Structure, Lower Mantle. Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Gupta H. K. (ed.). Springer, Cham Publ., 2020, pp. 54–59.

  37. Eschenbach W. Congenital Climate Abnormalities. Available at : http://alethonews.wordpress. com/2010/02/13/congenital-climate-abnormalities (accessed 10.03.2021).

  38. Large holocene eruptions // Database of the Smithsonian Institutionʼs Global Volcanism Program. Available at : (accessed 18.06.2021).

  39. Loehle C. A 2000-Year Global Temperature Reconstruction Based on Non-Tree Ring Proxies. Energy & Environment. 2007, vol. 18, no. 7+8, pp. 1049–1058, DOI: 10.1260/095830507782616797.

  40. Petterson O. Long periodical (sic) variations of the tide-generating force. Publication Circular Conseil Permanent International pour lʼExploration de la Mer. 1915, vol. 65, pp. 2–23.

  41. Solar System Scope, Online model of Solar system and night sky. Available at : https://www. (accessed 10.07.2021).

  42. Sparks S. R. J., Sigurdsson H. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature. 1977, vol. 267, pp. 315–318.

Copyright 2021. All rights reserved.

Posted Thursday March 31st, 2022 by admin in category "Без рубрики